N
N

N

HAL

open science

Traffic Flow Reconstruction from Limited Collected
Data
Nail Baloul, Amaury Hayat, Thibault Liard, Pierre Lissy

» To cite this version:

Nail Baloul, Amaury Hayat, Thibault Liard, Pierre Lissy. Traffic Flow Reconstruction from Limited
Collected Data. 64th IEEE Conference on Decision and Control (CDC 2025), IEEE, Dec 2025, Rio

de Janeiro, Brazil. hal-05042012v2

HAL Id: hal-05042012
https://hal.science/view/index/docid /5411178
Submitted on 11 Dec 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/view/index/docid/5411178
https://hal.archives-ouvertes.fr

Traffic Flow Reconstruction from Limited Collected Data

Nail Baloul, Amaury Hayat, Thibault Liard and Pierre Lissy

Abstract— We propose an efficient method for reconstructing
traffic density with low penetration rate of probe vehicles.
Specifically, we rely on measuring only the initial and final
positions of a small number of cars which are generated
using microscopic dynamical systems. We then implement a
machine learning algorithm from scratch to reconstruct the
approximate traffic density. This approach leverages learning
techniques to improve the accuracy of density reconstruction
despite constraints in available data. For the sake of consistency,
we will prove that, if only using data from dynamical systems,
the approximate density predicted by our learned-based model
converges to a well-known macroscopic traffic flow model when
the number of vehicles approaches infinity.

I. INTRODUCTION

Vehicular traffic is often described at two distinct levels,
microscopic and macroscopic. The microscopic approach
focuses on individual vehicles and their interactions. It
considers the behavior of each driver capturing detailed
dynamics such as velocity and acceleration. It enables to
account for the impact of individual decisions on overall
traffic flow. The macroscopic approach relies on a continuity
assumption, describing traffic flow in terms of density, flow
rate and mean speed. It treats traffic as a continuous fluid,
governed by conservation principles such as the conservation
of vehicles. It allows for large-scale traffic management.
We refer to the survey papers [1], [4], [10] for a general
discussion about traffic models at different scales. Because
the state of continuous systems or high-dimensional micro-
scopic systems is impossible to fully monitor, being able
to reconstruct it from limited traffic data is a paramount
challenge that has attracted a strong attention in the last two
decades [2], [3], [7], [11].

We aim to construct a model that closely approximates
the original (or intrinsic) traffic model while observing
considerably fewer vehicles. This approach is motivated by
the fact that monitoring all vehicles on a roadway is very
challenging and often impractical due to technical limita-
tions or resource constraints. Our main contribution is to
implement a machine learning algorithm that reconstructs
traffic flow using only the initial and final positions of
probe vehicles. A key advantage of our approach is that
it implicitly satisfies conservation laws without having to
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enforce them with additional constraints. This is achieved
by using artificial data created by adjusting well-known
traffic flow models and using activation functions in neural
networks tailored to underlying physical problems.

The paper is organized as follows. In section 2, we
introduce the traffic models used throughout our study.
Section 3 paves the way for the formulation of a con-
strained optimization problem that will be the core of our
machine learning algorithm in section 4. Section 5 provides
a theoretical guarantee of our model. In section 6 we will
illustrate the efficiency of our learning-based method by
numerical experiments. Finally, section 7 concludes the paper
and suggests directions for future research.

II. TRAFFIC FLOW MODELS
A. Microscopic model

We consider a system of IV + 1 vehicles moving on a one
dimensional single-lane road. The first vehicle is designated
as the leader while the remaining vehicles are referred to as
followers. The position of each vehicle 7 at time ¢ is denoted
by xV(t). Each vehicle, regarded as a particle, moves at
a speed computed via a velocity map v(-) and a distance
to the vehicle immediately ahead of it. We assume that the
leader has no vehicle in front of it and therefore maintains
constant and maximal velocity denoted vy,.x. Additionally,
the cumulative length of the vehicles is given by L. In other
words, L = [N, where [ is the average length of a single
car. Then the Follow-the-Leader (FtL) microscopic model is

N (1) = Vmax, t>0,

SN\ L

) (t) =v (N(mﬁﬂt)—xﬁ“t))) , t>0, (1)
va(o):ju Z-:O,...7]\/v7

where Z; denotes the initial position of vehicle ¢. In [6], the
authors established well-posedness of system (1) under the
condition that the initial positions satisfy o < Z; < -+ <
Zn—1 < Z. This nonlinear model not only becomes high-
dimensional and computationally expensive when dealing
with a large number of vehicles but also assumes that drivers
react solely to the vehicle immediately ahead, disregarding
the influence of other vehicles and overall traffic conditions.
Thus when we have a large number of vehicles it is often
more adapted -at least computationally- to consider a macro-
scopic model as described in the following.

B. Macroscopic model

The Lighthill-Whitham-Richards (LWR) model describes
traffic flow using the one-dimensional conservation law.



Indeed, vehicles are treated as a continuous medium similar
to particles in fluid which leads us to the initial value problem

90 (¢,x) + 22 (¢ 2) = 0,
p(O,.’L‘) = ﬁ(m)v

where p(t,x) is the traffic density at position = and at time
t, f(p) is the flux function representing the flow rate of
vehicles and p is the initial vehicular density. Typically, the
flux function is expressed as f(p) := pv(p), where v(p)
is representing the average velocity of vehicles at a given
density. Obviously, this model does not capture the behavior
of individual vehicles as it focuses on aggregate traffic flow
variables such as density and flow rate.

The convergence analysis of microscopic FtL. model (1)
towards macroscopic LWR model (2) has been extensively
studied in recent years [5], [8]. The procedure involves
considering an initial density p which is discretized to
determine the initial positions of N + 1 vehicles. We then
allow FtL system (1) to evolve according to its dynamics
and compare the resulting solution with the one that satisfies
LWR model (2) as the number of vehicles approaches infinity
and the length of each car tends to zero.

r €R,
z € R,

0
=0

C. Data-driven based model

In our scenario, it is crucial to note that, unlike previous
works that often rely on a given initial density, we do
not have access to this critical information. It represents
a significant challenge, as density is a key component for
accurately predicting traffic flow.

In [2], [3], the authors considered probe vehicles regarded
as mobile sensors within the traffic flow. These vehicles
are governed by an Ordinary Differential Equation (ODE)
system analogous to (1) where traffic density evolves accord-
ing to a Partial Differential Equation (PDE) related to (2).
To reconstruct density, vehicle positions x;(¢), local density
pi(t) = p(t,z;(t)) at vehicle locations and instantaneous
speed v;(t) = &;(t) were needed in real time. This physics-
informed learning method relies on explicit enforcement of
conservation laws through PDE-derived Lagrangian terms
in their optimization. Its main drawback is the lack of
theoretical guarantee to prove that the reconstructed density
converges to the conservation law. In [9], the authors adopted
a Physical Informed Neural Network (PINN) strategy using
density and flow measurements from synthetic data com-
puted at fixed spatial locations. They illustrated that accuracy
of their traffic state estimation improves when the number of
locations increases. In [12], the authors designed a Physics-
Informed Deep Learning (PIDL) method that integrates
machine learning to learn the Fundamental Diagram (FD)
mapping from traffic density to flow or velocity. In [7],
the authors conducted the Mobile Century field experiment
where they used GPS-enabled mobile phones as a cost-
effective traffic monitoring system. The system collected
continuous trajectory data, with updates recorded every three
seconds. Their results suggested that a 2 — 3% penetration of
GPS-equipped phones in the driver population could provide
accurate measurements of traffic flow velocity.

In contrast, our approach requires fewer information than
[2], [3], [7], [9], [12] as it only assumes the knowledge of
initial and final positions of probe vehicles, simplifying data
collection and reducing the need for real-time measurements.

III. MATHEMATICAL FORMULATION

To formalize our model, we first adapt (1) to a framework
involving an optimization variable and a finite time horizon.

A. Parametrized ODE system
We consider the ODE system with finite time 7'

& (t) = Umax, t € (0,7,
N = (i L te (0,7, (3
¢ N(zN,()—2N@) )’ b
x'fv(o):jla Z'ZO,...,n,
where o = (aff,adV,... ;e )T € R" is a parameter

and L is still representing the total length covered by all
vehicles in a bumper-to-bumper configuration. In system
(3), considered vehicles represent only a subset of the total
involved. For 4 = 0,...,n—1, z; and ¥; denote respectively
the given initial and final positions of car ¢. The goal is to
gather observations from a significantly reduced number n
of probe vehicles compared to the total number V.

In system (3), afv stands for the number of vehicles in the
segment [x;(-), x;+1(-)) between consecutive probe vehicles
1 and 7 + 1. Therefore, we impose physical conditions

n—1

al €[L,z], i=0,...n—1, Y of =N, @
j=0

where Zi = min {N (j?i+1 — ji) /L,N (gi+1 — :ljz) /L} .

The lower bound of 1 is trivial, as the segment must contain
at least one vehicle. The upper bound ensures that there is
enough space between consecutive probe vehicles for this
number of vehicles. Since L/N is the length of a car,
there cannot be more than k cars on a segment, as kL/N
is the minimal possible space required by k cars on the
road. Moreover, a key assumption of our model is that
overtaking between probe vehicles is not allowed. In other
words, similarly to FtL. system (1), the number of vehicles
between consecutive probe vehicles remains constant over
time which translates to oY being constant with time. To
handle constraints (4) efficiently, we introduce the notation

n—1
Ay = aER":afVE[l,Ei],Za;V:N . (5
j=0

The inclusion of oV in ODE system (3) preserves well-
posedness of the system while allowing for a parametric
adjustment to the vehicle dynamics. It will also play a role
in establishing convergence to macroscopic model (2) which
facilitates the transition from discrete, vehicle-level dynamics
to continuous, density-level dynamics.

We choose from now on to drop the superscript when
referring to trajectories for simplicity of notation.



B. Global existence and uniqueness

We assume that the velocity satisfies asumptions

(v1) v € CY([0, +00)),
(v2) v is decreasing on [0, +00),
(v3) v(0) = Vppax for some vy € R.

Since parameter oY is bounded and v is smooth, it is

straightforward to show local existence and uniqueness of the
solution to ODE system (3) from Picard-Lindelof Theorem.
To ensure that the solution exists globally, we have to prove
that the distance between two consecutive probe vehicles
never vanish. The result has been shown by Di Francesco
and Rosini in [6] for the classical FtL. model (2) involving
all vehicles in the system. We briefly outline it in our context,
where the same principle can be proven to hold.

Lemma 3.1: Let (zq(:),...,z,(-)) be the solution of
ODE system (3) and v satisfy hypotheses (v1)-(v3). Then the
discrete maximum principle holds; for all i = 0,...,n —1
and for all ¢t € 0,77,

oNL

]\;—7M S Z‘i_t,_l(t) _xz(t) S i‘n_i‘()"'_(vmax - U(M)) t7 (6)

N
NI .
where M = max i~ denotes the maximum
i=0,...n—1 \ N(Zi+1—%;)

discrete density at initial time ¢ = 0.

C. Discrete density

To clearly articulate the relationship between the state of
ODE system (3) and the unknown density in equation (2)

we introduce for ¢ = 0,...,n — 1 the discrete density as
N
N o; L
Pi (t) = ) te [OvT]v (7)
N(zipa(t) — zi(t))

where the trajectories x(-) of the probe vehicles are solutions
to system (3). plN(-) represents the local density in the
interval between consecutive probe vehicles localised at x;(-)
and z;1(-). Based on (7), we define for z € R the piecewise
constant Eulerian discrete density as

N-1

pN(t,x) = Z piv(t)X[mi(t),mi+1(t))($)7 te [07T]> ®)
=0

where y 4 is the characteristic function of the set A. As
proved in [8], pN in (8) can be seen as a discrete approxi-
mation of the solution to initial value problem (2).

IV. LEARNING-BASED DENSITY ESTIMATION

Our main focus is to reconstruct the traffic density only
using initial and final positions of probe vehicles. To that end,
we will solve an optimization problem that will allow us to
construct a traffic discrete density p” in (8) that converges
to the solution of LWR model (2) when NN tends to infinity.

A. ODE constrained optimization problem

We address our optimization problem with an innovation
which contrasts with physics-informed methods. It lies in
deliberately avoiding direct incorporation of the PDE into the
system due to the lack of theoretical guarantee induced by
these methods. We instead leverage the established conver-
gence under certain conditions of FtL microscopic model (1)
to LWR macroscopic model (2). This convergence implicitly
ensures mass conservation without requiring explicit PDE
constraints, thus maintaining flexibility in the reconstructed
solution space while preserving physical consistency. Enforc-
ing directly the PDE constraints would not pose a computa-
tional challenge but would instead create a data dependency.
Indeed, it would require time-varying density measurements
at specific points in space, which we exclude from our
problem set-up since our methodology assumes no density

measurements. We first compute the leader’s trajectory
Zp(t) = Vmaxt + Tpn, t€[0,T].

We then introduce for ¥ € Ay the matrix W,~ that
accounts for interaction between probe vehicles

(Won)ii = *QNLL i=0,...,n—1,
(WOCN)Z';’L'JF:[ = Q¥L7 Z = 1,...,71—27 (9)
(Wan)ij =0, otherwise,

and function b~ (-) defined as
bon (t) = (0,...,0,b,_1())" € R, (10)

where b, _1(t) == N/al¥ | L (vmaxt + Z,) accounts for the
influence of the leader towards its followers. Setting V' as

V(z)=v(z""), z€R, (11)
we can rewrite system (3) as
() =V (Wonz(t) + bon(t),  te (0,T],
_ _ T (12)
2(0) = (ZTo, .-y Tn-1) ,
where the state variable z(-) == (2(-),...,Tn_1(-))" rep-

resents the trajectories of the probe followers.

We emphasize that initial density p of the entire fleet is
unknown, as we do not have access to the starting positions
of all vehicles. Consequently, the discretized initial density
pY which would typically depend on initial positions of
all vehicles, cannot be determined. Equivalently, the ground
truth value of oV is unknown as it relies on information that
is not available to us. This limitation highlights the challenge
of reconstructing the system’s behavior based on our limited
data collection. From Cauchy problem (12) and feasible set
(5) we write our ODE constrained optimization problem as

minimize % |=(T) — g|” (13a)
st. () =V (Wona(t) +bon (t)), te€[0,T], (13b)
2(0) =z, (13c)
o e Ay (13d)



The objective function (13a) is a final position matching
term which minimizes the discrepancy between the observed
final positions ¢ of probe vehicles and the corresponding final
positions z(7T') predicted by the microscopic ODE model.
Moreover, the problem involves constraints related to dynam-
ics of the probe vehicles (13b)-(13c) whose velocities depend
on inter-vehicle spacing influenced by oV that must satisfy
(13d). This formulation enables traffic density reconstruction
from sparse observations by enforcing realistic vehicle dy-
namics, without directly incorporating PDE constraints.

Machine learning is effective at finding complex data
patterns. Our method is based on the use of a neural network
designed to understand the dynamics of traffic by breaking
down the process into small time steps.

B. Dataset generation

Dataset consist of artificial data based on simulated FtL
dynamics. Precisely, we let evolve N + 1 vehicles using
classical FtL model (1) until time T is reached. 10% of
the total fleet serve as probe vehicles for training data.
These vehicles provide initial and final position data used
in the machine learning training process. The probe vehicles
represent a balanced sample of the overall traffic dynamics.
An additional 2.5% of the total fleet are selected for testing
purposes so that 80% of the artificial data are for training
and the remaining 20% are test data. Test data are strictly
reserved for testing the model and are not used in any
part of the training process. It is crucial to emphasize that
the optimization network never “sees” or interacts with the
initial and final positions of test vehicles. This separation
is fundamental to our methodology, as it allows for an
unbiased assessment of the model’s performance. This choice
enables us to evaluate whether the model has truly learned
the underlying physics of traffic flow, rather than merely
memorizing training data.

C. Learning architecture

We have designed the network architecture using a residual
network (ResNet) approach. Each residual block in our
ResNet corresponds to a single time step in the simulation.
The network starts with an input representing the initial posi-
tions of probe vehicles. This state is then propagated through
time using a single, repeating residual block. The number of
times this block is applied corresponds to the number of time
steps in the simulation. Starting from initial traffic positions,
the network predicts the next traffic state based on the current
one. This repeated process allows step-by-step simulation
of traffic flow until final time is reached. The structure
described mirrors the first-order Euler discretization for ODE
system (12). The residual block incorporates physics-based
principles of traffic flow. The weights (9) and biases (10) of
the network are not independent variables, but are instead
functions of «. Nonlinear map (11) acts as a physics-
grounded activation function. Optimizing « determine the
entire network’s behavior.

Parameter update

————————————————

Discretization step At

(Repeat for all k = z'At)

Final state z(T")

——»  Forward process
- -  Backward propagation

¢

: Auto-diff.

Prediction

Loss L£t720 (2(T), §)

Fig. 1: Learning procedure

D. Learning procedure

Fig. 1 illustrates the overall learning procedure. Our task
is to minimize the cost between predicted and observed final
positions. Predictions made by the neural network follow
traffic rules defined by dynamics (13b) parameterized by .
Indeed, the final traffic state «®(7") reconstructed through
our ResNet architecture is compared to the observed training
data 7. The training loss derived from (13a) writes £t"2i" =
300 olx$(T) — g;|* and computes the error between this
final predicted state and the final observed state. Optimization
parameter « is adjusted using backpropagation to minimize
prediction errors. This iterative process of prediction, com-
parison and adjustment enables the model to capture the
complex dynamics of traffic flow.

After training, we recover from « the discrete vehicle
densities (7). From these, we construct piecewise constant
Euler discrete density p’¥ in the form of (8) and use it to
simulate on our test data. In particular, we solve system

t € (0,7,

14
i:07~~-antest7 (19
where p(t,z;(t)T) = lim

p( ( ) ) =z (t);x>x4(t)
cates that vehicle 7 is affected by the density located in
front and where the density p'V is the approximate density

obtained from training. We let evolve system (14) from

initial test positions Z;*** and measure the testing error
Lrest = LSt a%(T) — 5]? between simulated final

Ntest

positions and observed test data g, **.

p (t,x) which indi-

V. CONVERGENCE OF THE MODEL

In this section we prove that, if only using data from
dynamical systems, the approximate density p constructed
by our machine learning model converges to the solution of
LWR (2) when the number of vehicles approaches infinity.

Although our setting incorporates probe vehicles and pa-
rameter o, we can adapt most of the results established in
[6]. We recall that the authors showed the convergence of
the solution to microscopic model (1) to the unique entropic



solution to macroscopic model (2) when N — +oo. In our
context, the main challenge lies in imposing a condition on
the distribution of a which would guarantee convergence.

We demonstrate that the discrete initial density p?¥ (0, )
converges to the initial condition p in LWR model (2)
under this additional assumption. We make the important
observation that by construction the initial traffic density
must satisfy for: =0,...,n —1

xT
Tiy1 = Sup {33 eER: / ply)dy < aiL} .
z; N
Indeed, although we do not have access to the ground-truth
initial car density p, we do know that initial positions z; of
our probe vehicles verify (15) which states that the number
of unobserved vehicles between [z;,x;41) is given by «.
The following result inspired from [6, Proposition 4]
ensures that the discretization aligns consistently with the
true initial density when N tends to infinity. To simplify
notations, let for ¢ € [0, 7], p(t) = p(t,-) . We require the
Wasserstein distance defined in [6] by

Wra(f,9) = £ ((=00,-]) = g((=00, )l r (m )

We refer readers to [6, Section 2.3] for a rigorous introduc-
tion to this concept. Then, one can prove the following.
Proposition 5.1: Let p satisfies (15) and assume that

1%1_\/ = o(N).

(15)

(16)

a7

max

1=0,...,n—
Then, the sequence (p™ (0)),en converges to p in the sense
of the Wy, ; -Wasserstein distance in (16).

Remark 5.2: A particular case of assumption (17) is when
max;—o, . n—10) < CNlog(N)~! for some C' > 0. This
common choice ensures controlled growth of a .
Moreover, by leveraging the expression of discrete density
(8), we can generalize the convergence to the entropy solu-
tion of conservation law (2), referring to the methodologies
from abovementioned work. Specifically, [6, Theorem 3]
which asserts the convergence of p™V to the unique entropy
solution of (2) remains applicable in our case, requiring only
minor modifications to the original arguments.

VI. NUMERICAL EXPERIMENTS

We present some results of our numerical simulations
using the abovementioned training procedure. We consider
two distinct traffic scenarios where the maximum allowable
speed of traffic iS vpax = 120 km/h and the maximum
traffic density is pmax = 200 cars’/km. We consider a special
instance of function v, known as the Greenshields velocity
v(p) = Vmax Max {1l — p/pmaz,0}, p € [0, prmaz]- A time
period of 0.1 corresponds to a real-world duration of 6
minutes. In the following illustrations, the origin represents
the initial position £g = 0 of the last follower at ¢t = 0. The
right end of the x-axis corresponds to the leader’s position
at the final time 7. The initial domain refers to the road
portion occupied by all probe vehicles at the simulation start.
The first scenario captures a traffic pattern characterized by
alternating regions of congestion and free flow, represented
by multiple waves.

3 Tested vs Target Final Positions
P ,|[MSE=0.0483
/ RE= 0.0053

Position [km]
Position [km]

Predicted ! Vatd Tested
o Target ||l o «  Target
Vehicle Index Vehicle Index

(a) NN learning using 5,000 epochs  (b) Testing using predicted density

Fig. 2: Comparison between predictions and data with N = 2000

Tested vs Target Final Positions

o MSE= 0.0076
{RE= 0.0020 7
. - o
_ -~
< ”
s ;
Predicted / Tested
. Target J o . Target

“Vehicle Index Vehicle Index

(a) NN learning using 5,000 epochs  (b) Testing using predicted density

Fig. 3: Comparison between predictions and data with N = 4000

Let p(0,2) = 0.6pmax + 0.3pmax sin(27kx) be the initial
density, where £ > 0 is the number of waves. We set k = 3.

Fig. 2 and Fig. 3 illustrate the errors obtained by both
training and testing phases of our learning procedure with
different values of N and 7. Precisely, during the testing
phase where N = 2000 and 7" = 0.1, MSE was calculated
to be 0.0483, while RE was 0.0053. When the number of
vehicles was increased to N = 4000 and the time duration to
T = 0.2, both MSE and RE decreased to 0.0076 and 0.0020
respectively. This demonstrates that our methods maintains
its robustness even when applied to high dimensional data.

Additionally, the method allows us to reconstruct density
for all times. Fig. 4 compares the reconstructed discrete
density with the solution to LWR model (2), which is
computed using a Godunov scheme, as well as the ground
truth initial density from which the total fleet of vehicles
evolved before selecting probe vehicles.

Vehicle Trajectory

Leader Trajectory

Position [km] Position [km]

(a) Reconstructed density (b) Godunov density

Fig. 4: Comparison between the predicted density and Godunov
scheme density with N = 4000 and 7" = 0.2

Fig. 5 presents the final reconstructed density for both
previous settings, showing a strong match with the ground
truth final density obtained by solving PDE (2).

The second traffic scenario represents an abrupt transition
in traffic conditions. The shock where occurs a change from
low to high density is set at normalized position 0.5 with
respect to the initial domain, where position O corresponds
to the last vehicle and position 1 corresponds to the leader’s
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Fig. 5: Reconstructed final traffic density
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Fig. 6: Comparison between predictions and data with N = 3000

0.4pmax, 0 <2 <0.5,

0.9pmax, 05 <ax <1,

The learning procedure applied to N = 3000 cars yields
results in Fig. 6. In shock simulations, longer times reduce
system variations, improving reconstruction consistency. In-
deed, Fig. 8 and Fig. 7 illustrate that for large final times
and a large number of vehicles, such as 7' = 0.2 and
N = 5000, the reconstructed final density converges well
to the solution obtained from solving PDE (2). Even under
limited conditions, the reconstruction maintains an obvious
accuracy. This suggests that the approach can effectively
handle a range of scenarios, from those with ample time
and vehicles to those with more limited resources.

Position [km]

initial position. Let p(0,x) =

Vehicle Trajectory

Leader Trajectory

Position [km]

(a) Reconstructed density (b) Godunov density

Fig. 7: Comparison between the predicted density and Godunov
scheme density with N = 5000 and 7" = 0.2

—— Predicted
—— Godunov
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a
Density [cars/km]

Density [cars/km]

* position [;m] h

Position [km‘]’

(a) N = 3000, T = 0.1 (b) N = 5000, T = 0.2

Fig. 8: Reconstructed final traffic density

VII. CONCLUSIONS AND PERSPECTIVES

In this article, we have developed a model that combines
traditional traffic flow models with a data-driven approach.
Our method is able to perform effectively with limited
data and sparse sensor information while maintaining low
computational complexity. We avoid the need for real-time
updates that often require high-frequency data inputs and can
be expensive. We opted to use exclusively data generated
by traffic FtL. model (1) rather than real-world data. The
main reason lies on the fact that simulated data allow us to
precisely replicate the assumptions and conditions required
for theoretical guarantees. Our simulation focused on the use
of artificial data generated by microscopic traffic models due
to its suitability for theoretical convergence analysis. Indeed,
we showed that simulated data allow us to precisely replicate
the assumptions and conditions required for demonstrating
the convergence of our model to the macroscopic LWR
model. The methodology developed remains applicable to
real-world data as a key strength of our model is its ability
to integrate both artificial and real data. The use of real
data would represent an important next step in validating
our approach under realistic traffic conditions.
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