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Motivation

Traffic jam in Beijing

Traffic congestion is a main contributor of air pollution and excessive travel time
⇒ impacts urban mobility and environmental quality

Traffic management relies on control schemes to address perturbed traffic conditions

Most existing control techniques require complete and accurate knowledge of state

In practice, full information is rarely available due to limited and noisy measurements

Goal ⇒ develop reliable methods for estimating traffic from partial data
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Traffic Flow Modeling Scales

Benchmark scales of traffic models

microscopic ⇒ individual vehicle dynamics, full information given

macroscopic ⇒ continuum representation using aggregated variables

Microscopic model

Simulation of agent-based dynamics

Tracking position xi (t), velocity vi (t)
of vehicle i at time t

Each driver responds to surrounding
traffic by adjusting his speed

v̇i (t) = F (vi (t), xi (t)) (1)

Macroscopic model

Traffic modelled as a continuous flow

Density ρ(t, x), speed v(ρ), flux f (ρ)

Total number of cars is conserved

0 =
d

dt

∫ b

a

ρ(t, x)dx

=f (ρ(t, a))− f (ρ(t, b))

=−
∫ b

a

∂

∂x
f (ρ(t, x))dx

(2)

Connection ⇒ macroscopic variables emerge from microscopic interactions2

2Di Francesco, Fagioli, Rosini, and Russo 2016.
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Microscopic Model

2 quantities -which only depends on time- used to describe traffic systems
⇒ state xi (position of vehicle i at time t)
⇒ velocity vi (speed of vehicle i at time t)

Dynamics depend on headway ⇒ captures reaction effects explicitly

ẋi (t) = v(zi (t)) (3)

where zi (t) accounts for surrounding of vehicle i
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Macroscopic Model

3 quantities -which all depend on space and time- used to describe traffic systems
⇒ relative density ρ (number of vehicles per unit of length)
⇒ average velocity v (mean speed of vehicles on a road segment)
⇒ flow rate f (number of vehicles passing across a portion of the road during a
period of time)

Fundamental diagram of traffic flow ⇒ f (ρ) = ρV (ρ)

Hydrodynamic equation and conservation law lead to LWR model

ρt + (ρV (ρ))x = 0 (4)

where V (ρ) is the equilibrium velocity
⇒ assumes that in any given situation, vehicles immediately adjust their velocity to
match the equilibrium velocity dictated by density v(t, x) = V (ρ)
⇒ neglects acceleration effects and assumes traffic flow behaves as a compressible
fluid
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Model-Based Approaches

Follow-the-Leader (FtL), microscopic first order model
⇒ dynamics of each vehicle depend on vehicle immediately in front

ẋN
N (t) = vmax, t > 0,

ẋN
i (t) = v

(
L

N(xNi+1(t)−xNi (t))

)
, t > 0, i = 0, · · · ,N − 1

xN
i (0) = x̄N

i , i = 0, · · · ,N

(5)

⇒ accurate traffic representation, encodes individual movements
⇒ computationally demanding, requires more data

Lighthill-William-Richards (LWR), macroscopic traffic flow model
⇒ vehicles treated as a continuous medium similar to particles in fluid
⇒ one-dimensional (hyperbolic) conservation law{

∂
∂t
ρ(t, x) + ∂

∂x
f (ρ(t, x)) = 0, x ∈ R, t > 0,

ρ(0, x) = ρ̄(x), x ∈ R
(6)

⇒ faster implementation, less data-intensive
⇒ overlooks traffic heterogeneity, oversimplifies traffic phenomena
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Model-Based Approaches

Convergence analysis of FtL approximation scheme towards LWR model3

Link between FtL and LWR based on atomization of initial density ρ̄

x̄N
i+1 := sup

{
x ∈ R :

∫ x

x̄Ni

ρ̄(y)dy =
L

N

}
, i = 0, · · · ,N − 1 (7)

Solution of PDE (5) can be recovered as many particle limit4 of ODE system (6)

Macroscopic ini-
tial datum ρ̄

Microscopic ini-
tial datum ρ̄N

Macroscopic solution ρ

Microscopic solution ρN

PDE (LWR)

ODE system (FtL)

Discretization

as N → +∞
Convergence

as N → +∞

Coupled Resolution of a Microscopic ODE System and a Macroscopic PDE

3Holden and Risebro 2017.
4Di Francesco and Rosini 2015.
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Data-Driven Approaches

Hybrid micro-macro models explored in traffic density reconstruction5
ẋN
N (t) = vmax, t > 0,

ẋN
i (t) = v

(
ρ(t, xN

i (t))
)
, t > 0, i = 0, · · · ,N − 1

∂
∂t
ρ(t, x) + ∂

∂x
f (ρ(t, x)) = γ2 ∂2

∂x2
ρ(t, x), x ∈ R, t > 0, γ6 > 0

(8)

Partial state reconstruction7 using measurements from probe vehicles (PVs)
⇒ low penetration rate Nprobes ≪ Ntotal

⇒ recover density ρ from limited trajectories

Requires access to real-time positions, densities and instantaneous speeds of PVs

Prior approaches rely on knowledge of initial density ρ̄
⇒ No access to this critical information, need to leverage available data

5Barreau, Aguiar, Liu, and Johansson 2021.
6γ > 0 is a diffusion correction parameter. Hopf proved that as γ tends to zero, the solution of LWR with

diffusion term converges in the sense of distributions to the solution of classical LWR.
7Liu, Barreau, Cicic, and Johansson 2020.

N.B, A.H, T.L, P.L (CERMICS, ENPC) Traffic Flow Reconstruction October, 10th 2025 8 / 34



Data-Driven Approaches

Hybrid micro-macro models explored in traffic density reconstruction5
ẋN
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Parametrized Microscopic Model

Limited data scenario ⇒ only initial and final
{(

x̄N , ȳN
)}n

i=0
positions of PVs

Enhanced version of FtL scheme (5) adding a parameter
⇒ αN accounts for unobserved vehicles between consecutive PVs
⇒ bridges discrete (vehicle-level) dynamics to continuous (density-level) dynamics

Parametrized ODE system with finite time horizon
ẋN
n (t) = vmax, t ∈ (0,T ]

ẋN
i (t) = v

(
ρNi (t)

)
, t ∈ (0,T ] i = 0, · · · , n − 1

xN
i (0) = x̄N

i , i = 0, · · · , n
(9)

⇒ local discrete densities

ρNi (t) :=
αN
i L

N
(
xN
i+1(t)− xN

i (t)
) , t ∈ (0,T ], i = 0, · · · , n − 1 (10)

Piecewise constant Eulerian discrete density

ρN(t, x) :=
N−1∑
i=0

ρNi (t)χ[xNi (t),xNi+1(t))
(x), x ∈ R, t ∈ [0,T ] (11)
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Well Posedness

Assumptions on velocity

v ∈ C 1([0,+∞)) (12a)

v is decreasing on [0,+∞) (12b)

v(0) = vmax <∞ (12c)

Local existence and uniqueness of solution to (9) (for fixed α) via Picard-Lindelöf

Condition on initial car positions x̄N
0 < x̄N

1 < · · · < x̄N
n−1 < x̄N

n

⇒ global existence

Lemma (Discrete maximum principle)

For solution x(t) of (9) with v satisfying (12a)-(12c), for all i = 0, · · · , n − 1,

αN
i L

NM
≤ xN

i+1(t)− xN
i (t) ≤ x̄N

n − x̄N
0 + (vmax − v(M)) t, ∀t ∈ [0,T ], (13)

where M := maxi

(
αN
i L

N(x̄Ni+1−x̄Ni )

)
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v ∈ C 1([0,+∞)) (12a)

v is decreasing on [0,+∞) (12b)

v(0) = vmax <∞ (12c)

Local existence and uniqueness of solution to (9) (for fixed α) via Picard-Lindelöf

Condition on initial car positions x̄N
0 < x̄N

1 < · · · < x̄N
n−1 < x̄N

n

⇒ global existence

Lemma (Discrete maximum principle)

For solution x(t) of (9) with v satisfying (12a)-(12c), for all i = 0, · · · , n − 1,

αN
i L
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Sketch of proof

Lower bound is satisfied at t = 0, aim at extending property for all times up to T

Equivalent to show

inf
0<t≤T

[xi+1(t)− xi (t)] ≥
αN
i L

NM
, i = 0, . . . , n − 1. (14)

⇒ recursive argument (backward from n − 1 to 0)

Property is true for i = n − 1

xn(t)− xn−1(t) =x̄n − x̄n−1 +

∫ t

0

(
vmax − v

(
αN
n L

N(xn(s)− xn−1(s))

))
ds

≥x̄n − x̄n−1 ≥
αN
n−1L

NM
.

Assume property is verified for j + 1 and prove it is still satisfied for j

inf
0<t≤T

[xj+2(t)− xj+1(t)] ≥
αN
j+1L

NM
. (15)
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Sketch of proof

By contradiction, assume that there exists 0 ≤ t1 < t2 such that
xj+1(t)− xj(t) ≥

αN
j L

NM
, t < t1

xj+1(t)− xj(t) =
αN
j L

NM
, t = t1

xj+1(t)− xj(t) <
αN
j L

NM
, t1 < t ≤ t2.

(16)

Since v is decreasing

xj(t) =xj(t1) +

∫ t

t1

v

(
αN
j L

N(xj+1(s)− xj(s))

)
ds

≤xj(t1) + v (M) (t − t1) ,

Moreover from (15), for t1 < t ≤ t2,

xj+1(t) =xj+1(t1) +

∫ t

t1

v

(
αN
j+1L

N(xj+2(s)− xj+1(s))

)
ds

≥xj+1(t1) + v (M) (t − t1)

⇒ xj+1(t)− xj(t) ≥xj+1(t1)− xj(t1) =
αN
j L

NM

which contradicts (16), so that (14) is satisfied.
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Sketch of proof

Show upper bound for i = 0, . . . , n − 1 and t ∈ [0,T ]

Recalling assumptions on v and applying system’s dynamics

xi+1(t)− xi (t) = xi+1(0)− xi (0) +

∫ t

0

(ẋi+1(s)− ẋi (s)) ds

≤x̄i+1 − x̄i +

∫ t

0

(
vmax − v

(
αN
i L

N(xi+1(s)− xi (s))

))
ds

≤x̄n − x̄0 + (vmax − v(M)) t,

Last equality is obtained from lower bound ⇒ proof is complete
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ODE-Constrained Optimization

Physical conditions on α := αN induce feasible set

AN :=

{
α ∈ Rn : αi ∈

[
1, z̄Ni

]
, i = 0, . . . , n − 1,

n−1∑
i=0

αi = N

}
(17)

with z̄Ni := min

{
N(x̄Ni+1−x̄Ni )

L
,
N(ȳNi+1−ȳNi )

L

}
, i = 0, . . . , n − 1

Approximate density reconstruction8 ⇒ find optimal interaction parameter α

minimize
α

1

2
∥x(T )− ȳ∥2

s.t. ẋ(t) = V (Wαx(t) + bα(t))

x(0) = x̄

α ∈ AN

(18)

Existence of solutions guaranteed by assumptions on V := v ◦ 1
· (continuity of v)

and constraints on α (compactness of AN)

No uniqueness (a priori) since nonlinear dynamics can lead to multiple minima

8Baloul, Hayat, Liard, and Lissy 2025.
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Learning Method

Dataset consists of artificial data based on simulated (classical) FtL dynamics (5)

Sampling of PVs yielding a balanced representation of overall traffic

Neural network architecture designed to understand dynamics of traffic

Residual network (ResNet) where each block corresponds to a single time step

Input x̄ and state x(.) is propagated by mirroring Euler discretization

x(t +∆t) = x(t) + V (Wx(t) + b)∆t (19)

Weights and biases W , b are functions of α
Wi,i := − N

αiL
, i = 0, . . . , n − 1,

Wi,i+1 := N
αiL

, i = 1, . . . , n − 2,

Wi,j := 0, otherwise,

(20)

bi (t) =:= δi,n
N

αn−1L

(
vmaxt + x̄N

n

)
, t ∈ [0,T ] (21)

Nonlinear dynamic map V acts as physics grounded activation function

Backpropagation to minimize predictions errors 1
n

∑n
j=0|x

α
j (T )− ȳN

j |2
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Neural Network for Constrained Optimization

Neural Network Parameter α

Fixed Discretization Step ∆t

Dynamics fα(xk , i∆t)

Next State xk+1 = xk + fα(xt , i∆t)∆t

Repeat for all k = i∆t

Final State x(T ) Loss L(x(T ), ȳ)

Optimization α← α− η∇αL

Residual Block i

Prediction

Auto-differentiation

Parameter update

Forward process
Backward propagation

Learning Architecture
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Model validation

Through predicted parameter ᾱ, training yields piecewise constant discrete density

ρN(t, x) =
n−1∑
i=0

ᾱiL

N(xN
i+1(t)− xN

i (t))
χ[xNi (t),xNi+1(t))

(x), x ∈ R, t ∈ [0,T ], (22)

Simulation on test data by solving ODE system{
ẋN
i (t) = v

(
ρN(t, xi (t)+)

)
, t ∈ (0,T ],

xN
i (0) = x̄N

i i = 0, . . . , ntest
(23)

Assess model’s performance by measuring test error 1
ntest

∑ntest
j=0 |xj(T )− ȳN

i |2
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Scheme of Model

Data set
Training
data

Time

Space Layers

Neurons

0 ∆t (N − 1)∆t N∆t = T

∆x

(n− 1)∆x

n∆x

Neural
network

Model

Test data

Macroscopic
dynamics of PDE

Microscopic dynamics
of System of ODE

Data

augmentation

GPS

positions

Good

accuracy

score

Macroscopic

state

reconstructed

Golden
model

Traffic Flow Reconstruction Pipeline
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Outline of Convergence Analysis

Prove that, if only using data from dynamical systems, approximate density ρN

predicted by our machine learning model converges to solution of the LWR model
(6) when the number of vehicles approaches infinity

Main challenge lies in imposing a condition on distribution of α which would
guarantee convergence

Demonstrate that discrete initial density ρN(0, ·) converges to the initial condition ρ̄
in the LWR model (6) under this additional assumption

In addition to Euler discrete density (11), consider empirical discrete density

ρ̂N(t, ·) := L

N

n−1∑
i=0

αN
i δxi (t)(·), t ∈ [0,T ]. (24)

Important observation: by construction, initial traffic density must satisfy

x̄i+1 = sup

{
x ∈ R :

∫ x

x̄i

ρ̄(y)dy ≤ αiL

N

}
, i = 0, . . . , n − 1 (25)

⇒ although no access to ground-truth initial car density ρ̄, initial positions x̄i of
probe vehicles verify (25) (i.e. number of unobserved vehicles between [xi , xi+1) is
given by αi )
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guarantee convergence

Demonstrate that discrete initial density ρN(0, ·) converges to the initial condition ρ̄
in the LWR model (6) under this additional assumption

In addition to Euler discrete density (11), consider empirical discrete density

ρ̂N(t, ·) := L

N

n−1∑
i=0

αN
i δxi (t)(·), t ∈ [0,T ]. (24)

Important observation: by construction, initial traffic density must satisfy

x̄i+1 = sup

{
x ∈ R :

∫ x

x̄i

ρ̄(y)dy ≤ αiL

N

}
, i = 0, . . . , n − 1 (25)

⇒ although no access to ground-truth initial car density ρ̄, initial positions x̄i of
probe vehicles verify (25) (i.e. number of unobserved vehicles between [xi , xi+1) is
given by αi )
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Convergence Result

Weak solution of (6) is entropy admissible if it satisfies Kruzhkov entropy condition∫ T

0

∫
R
|u − k|∂ϕ

∂t
+ sign(u − k)(f (u)− f (k))

∂ϕ

∂x
dxdt ≥ 0, ∀k ∈ R (26)

Theorem Convergence of approximate density to solution of LWR

Under some assumptions, piecewise-constant density

ρN(t, x) =
n−1∑
i=0

ᾱN
i L

N(xN
i+1(t)− xN

i (t))
χ[xNi (t),xNi+1(t))

(x), x ∈ R, t ∈ [0,T ], (27)

where ᾱN
i ∈ AN is a solution to (18) converges to unique entropy solution ρ of

∂ρ

∂t
(t, x) +

∂f (ρ)

∂x
(t, x) = 0, x ∈ R, t ∈ [0,T ],

ρ(0, x) = ρ̄(x), x ∈ R
(28)

Impose a condition that ensures controlled growth of αN
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Sketch of proof

Ensures discretization aligns consistently with true initial density when N →∞
Notations: for t ∈ [0,T ], ρ(t) := ρ(t, ·) and ρ̂(t) := ρ̂(t, ·).
In particular, at t = 0, ρ(0) := ρ(0, ·) and ρ̂(0) := ρ̂(0, ·)

Use Wasserstein distance defined in Di Francesco and Rosini 2015 by

WL,1(f , g) = ∥f (]−∞, ·])− g(]−∞, ·]∥L1(R,R) (29)

Proposition

Let ρ̄ satisfy (25) and assume that

max
i=0,...,n−1

αN
i = o(N) (30)

Then, both sequences (ρN(0))n∈N and (ρ̂N(0))n∈N converge to ρ̄ in the sense of the WL,1

-Wasserstein distance in (29)

Remark

A particular case of assumption (30) is when maxi=0,...,n−1 α
N
i ≤ CN

log(N)
for some C > 0
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Sketch of proof

Using lN := L/N, WL,1- distance and discrete density in (10)

WL,1(ρ
N(0), ρ̂N(0)) =

n−1∑
i=0

∫ x̄Ni+1

x̄i

(
αN
i lN − ρNi (t) (x − x̄i )

)
dx

=
n−1∑
i=0

αN
i lN

∫ x̄i+1

x̄i

(
1− x − x̄i

x̄i+1 − x̄i

)
dx

≤ max
i=0,...,n

{αN
i }lN (x̄n − x̄0)

(31)

⇒ it suffices to prove that (ρ̂N(0))n∈N converges to ρ̄ wrt WL,1- distance

Using expressions of both Euler (11) and empirical (24) discrete densities

WL,1(ρ̂
N(0), ρ̄)

=
n−2∑
i=0

∫ x̄i+1

x̄i

(
i∑

j=0

αN
j lN −

∫ x

−∞
ρ̄(y)dy

)
dx +

∫ x̄n

x̄n−1

(
L−

∫ x

−∞
ρ̄(y)dy

)
dx

=
n−2∑
i=0

∫ x̄i+1

x̄i

((
i−1∑
j=0

αN
j lN −

∫ x̄i

x̄0

ρ̄(y)dy

)
+

(
αN
i lN −

∫ x

x̄i

ρ̄(y)dy

))
dx

+

∫ x̄n

x̄n−1

(
n−2∑
j=0

αN
j lN −

∫ x̄n−1

x̄0

ρ̄(y)dy

)
+

(
αN
n−1lN −

∫ x

x̄n−1

ρ̄(y)dy

)
dx
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Sketch of proof

From atomization of initial density (25), deduce

WL,1(ρ̂
N(0), ρ̄)

≤
n−2∑
i=0

∫ x̄i+1

x̄i

(
αN
i lN −

∫ x

x̄i

ρ̄(y)dy

)
dx +

∫ x̄n

x̄n−1

(
αN
n−1lN −

∫ x

x̄n−1

ρ̄(y)dy

)
dx

=
n−1∑
i=0

αN
i lN

∫ x̄i+1

x̄i

(
1− 1

αN
i lN

∫ x

x̄i

ρ̄(y)dy

)
dx

≤ max
i=0,...,n

{
αN
i

}
lN(x̄n − x̄0)

From assumption (30) and estimate (31), conclude that (ρN(0))n∈N converges to ρ̄
in sense of WL,1-Wasserstein distance

Moreover, by leveraging expression of discrete density (11), generalize convergence
to unique entropy solution of conservation law (6), referring to Di Francesco and
Rosini 2015, Theorem 3 ⇒ require only minor modifications to original arguments
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Numerical experiments

Parameters
Maximum traffic speed vmax = 120 km/h
Maximum traffic density ρmax = 200 cars/km

Greenshields velocity v(ρ) = vmax max
{
1− ρ

ρmax
, 0

}
, ρ ∈ [0, ρmax ]

Final time horizon T = 0.1 h or T = 0.2

Sampling such 10% of total fleet serve as PVs for training and 2.5% for testing

Two traffic scenarii modelled

1 Shock wave represents an abrupt transition in traffic conditions
2 Stop-and-go wave characterized by alternating regions of congestion and free flow
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Shock wave scenario

(a) N = 3000

Comparison of predicted and target final PV positions
Top Results from training procedure

Bottom Results on test sounds
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Shock wave scenario

(a) N = 3000 (b) N = 4000 (c) N = 5000
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Shock wave scenario

(a) N = 3000

Comparison of reconstructed and macroscopic densities
Top Initial densities

Bottom Final densities
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Shock wave scenario

(a) N = 3000

Comparison of reconstructed and macroscopic densities
Top Reconstructed density from learning-based optimization

Bottom Macroscopic density from LWR PDE (Godunov scheme)
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Stop-and-go wave scenario

(a) N = 2000

Comparison of predicted and target final PV positions
Top Results from training procedure

Bottom Results on test sounds
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Stop-and-go wave scenario

(a) N = 2000

Comparison of reconstructed and macroscopic densities
Top Initial densities

Bottom Final densities
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Stop-and-go wave scenario

(a) N = 2000

Comparison of reconstructed and macroscopic densities
Top Reconstructed density from learning-based optimization

Bottom Macroscopic density from LWR PDE (Godunov scheme)
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Conclusion

Traffic State Reconstruction Approaches

Model-Based Method
⇒ uses microscopic and macroscopic models
⇒ provides theoretical guarantees
⇒ struggles to capture real-world complexities

Data-Driven Method
⇒ learns patterns directly from measurement data
⇒ derives system properties or predicts near-future states
⇒ requires extensive data for effectiveness

Our Approach
⇒ combines models and data to address sparsity and improve realism
⇒ Integrates physical priors with data observations
⇒ achieves reliable traffic reconstruction with limited observations
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Perspectives

Conservation law with unilateral constraint9 (toll gate){
LWR PDE (6) with

f (ρ(t, 0)) ≤ q(t), t > 0.
(32)

Conservation law with moving bottleneck10 (slow vehicle)
LWR PDE (6) with

f (ρ(t, y(t)))− ẏ(t)ρ(t, y(t)) ≤ αρmax
4vmax

(vmax − ẏ(t))2 , t > 0,

ẏ(t) = ω (ρ(t, y(t)+)) , t > 0,

y(0) = y0

(33)

Network11 with a junction12 J and N incoming roads and M outgoing ones{
∂tρl(t, x) + ∂x (f (ρl(t, x))) = 0, t > 0, x ∈ Il , l = 1, . . . ,N +M

ρl(0, x) = ρ0,l(x), x ∈ Il = [al , bl ], l = 1, . . . ,N +M
(34)

⇒
∑N

i=1 f (ρi (t, (bi )−)) =
∑N+M

j=N+1 f (ρj(t, (aj)+)) (Rankine Hugoniot)

⇒
∑N

i=1 f (ρi (t, (bi )−)) is maximized13 s.t. f (ρj(·, (aj)+)) =
∑N

i=1 aj,i f (ρi (·, (bi )−))
9Colombo and Goatin 2007.

10Liard and Piccoli 2021.
11Monneau 2024.
12Coclite, Piccoli, and Garavello 2005.
13Garavello and Piccoli 2006.
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