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Motivation

Traffic jam in Beijing

@ Traffic congestion is a main contributor of air pollution and excessive travel time
= impacts urban mobility and environmental quality
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Motivation

Traffic jam in Beijing

Traffic congestion is a main contributor of air pollution and excessive travel time
= impacts urban mobility and environmental quality

Traffic management relies on control schemes to address perturbed traffic conditions

Most existing control techniques require complete and accurate knowledge of state

In practice, full information is rarely available due to limited and noisy measurements

Goal = develop reliable methods for estimating traffic from partial data
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Traffic Flow Modeling Scales

Benchmark scales of traffic models

@ microscopic = individual vehicle dynamics, full information given

Microscopic model

@ Simulation of agent-based dynamics
@ Tracking position x;(t), velocity vi(t)
of vehicle i at time t

@ Each driver responds to surrounding
traffic by adjusting his speed

vi(t) = F(vi(t),x(t)) (1)

2Di Francesco, Fagioli, Rosini, and Russo 2016.
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Traffic Flow Modeling Scales
Benchmark scales of traffic models
@ macroscopic = continuum representation using aggregated variables

Macroscopic model

o Traffic modelled as a continuous flow
o Density p(t, x), speed v(p), flux f(p)

@ Total number of cars is conserved
d [P
O_E/ p(t, x)dx
=f(p(t,a)) — f(p(t, b))  (2)
/ F(p(t,x))dx

2Di Francesco, Fagioli, Rosini, and Russo 2016.
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Traffic Flow Modeling Scales

Benchmark scales of traffic models

@ microscopic = individual vehicle dynamics, full information given

@ macroscopic = continuum representation using aggregated variables

Microscopic model Macroscopic model

@ Simulation of agent-based dynamics

@ Tracking position x;(t), velocity vi(t)
of vehicle i at time t

@ Each driver responds to surrounding
traffic by adjusting his speed

vi(t) = F(vi(t),x(t)) (1)

o Traffic modelled as a continuous flow
o Density p(t, x), speed v(p), flux f(p)
@ Total number of cars is conserved
b
0:%/ p(t, x)dx
=f(p(t,a)) — f(p(t, b))  (2)

/ (p(t, x))dx

o Connection = macroscopic variables emerge from microscopic interactions?

2Di Francesco, Fagioli, Rosini, and Russo 2016.
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Microscopic Model

@ 2 quantities -which only depends on time- used to describe traffic systems
= state x; (position of vehicle i at time t)
= velocity v; (speed of vehicle i at time t)
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Microscopic Model

@ 2 quantities -which only depends on time- used to describe traffic systems
= state x; (position of vehicle i at time t)
= velocity v; (speed of vehicle i at time t)

@ Dynamics depend on headway = captures reaction effects explicitly
xi(t) = v(z(t)) (3)

where z;(t) accounts for surrounding of vehicle i
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Macroscopic Model

@ 3 quantities -which all depend on space and time- used to describe traffic systems
= relative density p (number of vehicles per unit of length)
= average velocity v (mean speed of vehicles on a road segment)
= flow rate f (number of vehicles passing across a portion of the road during a
period of time)
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o Fundamental diagram of traffic flow = f(p) = pV/(p)
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Macroscopic Model

@ 3 quantities -which all depend on space and time- used to describe traffic systems
= relative density p (number of vehicles per unit of length)
= average velocity v (mean speed of vehicles on a road segment)
= flow rate f (number of vehicles passing across a portion of the road during a
period of time)

o Fundamental diagram of traffic flow = f(p) = pV/(p)

@ Hydrodynamic equation and conservation law lead to LWR model

pe+ (pV(p))x =0 (4)

where V/(p) is the equilibrium velocity

= assumes that in any given situation, vehicles immediately adjust their velocity to
match the equilibrium velocity dictated by density v(t,x) = V/(p)

= neglects acceleration effects and assumes traffic flow behaves as a compressible
fluid
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Model-Based Approaches

o Follow-the-Leader (FtL), microscopic first order model
= dynamics of each vehicle depend on vehicle immediately in front

x,\/\/ = Vmax, t>0,

< (’Wm(f) x”(t))) t>0, i=0,---,N—-1 (5)
XN N P= 0, N

= accurate traffic representation, encodes individual movements
= computationally demanding, requires more data
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Model-Based Approaches

o Follow-the-Leader (FtL), microscopic first order model
= dynamics of each vehicle depend on vehicle immediately in front

X,\A/ = Vmax, t>0,
N | — . e —
X; (N(X’H(t) X,\,(t))) , t>0, i=0, N —1 (5)

N, i=0,- N

xN
= accurate traffic representation, encodes individual movements
= computationally demanding, requires more data

o Lighthill-William-Richards (LWR), macroscopic traffic flow model
= vehicles treated as a continuous medium similar to particles in fluid
= one-dimensional (hyperbolic) conservation law

{atp(t )+ ZF(p(t,x)) =0, x€R, t>0, ®)

(0, x) = p(x), x€R

= faster implementation, less data-intensive
= overlooks traffic heterogeneity, oversimplifies traffic phenomena
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Model-Based Approaches

e Convergence analysis of FtL approximation scheme towards LWR model®

3Holden and Risebro 2017.
“Di Francesco and Rosini 2015.
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Model-Based Approaches

e Convergence analysis of FtL approximation scheme towards LWR model®

@ Link between FtL and LWR based on atomization of initial density p

x L
)?,Ailzsup{XER[ﬁ(y)dy:N}, I:077N_1 (7)

N
i

3Holden and Risebro 2017.
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Model-Based Approaches

e Convergence analysis of FtL approximation scheme towards LWR model®

@ Link between FtL and LWR based on atomization of initial density p

X L
{1 = sup XGR:[Nﬁ(Y)dy:N , =0, ,N-1 (7)

@ Solution of PDE (5) can be recovered as many particle limit* of ODE system (6)

Macroscopic ini- PDE (LWR)

Macroscopic solution p

tial datum po

Discretization Convergence
as N — +oo as N — +oo

Microscopic ini-
Microscopic solution p™

tial datum p)’

ODE system (FtL)

Coupled Resolution of a Microscopic ODE System and a Macroscopic PDE

3Holden and Risebro 2017.
“Di Francesco and Rosini 2015.
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Data-Driven Approaches

@ Hybrid micro-macro models explored in traffic density reconstruction®

XII\\II(t) = Vmax;, t >0,

X' (t) = v (p(t, %' (1)) , t>0,, i=0---,N—1 (8)
p p a2

Zio(t, )+ Lf(p(t,x) = Zp(t,x),  x€R, t>0, 7°>0

5Barreau, Aguiar, Liu, and Johansson 2021.
b4 > 0is a diffusion correction parameter. Hopf proved that as + tends to zero, the solution of LWR with
diffusion term converges in the sense of distributions to the solution of classical LWR.
"Liu, Barreau, Cicic, and Johansson 2020.
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Data-Driven Approaches

@ Hybrid micro-macro models explored in traffic density reconstruction®

XII\\II(t) = Vmax, t>0,

X' (t) = v (p(t, %' (1)) , t>0,, i=0---,N—1 (8)
p p a2

Zio(t, )+ Lf(p(t,x) = Zp(t,x),  x€R, t>0, 7°>0

o Partial state reconstruction’ using measurements from probe vehicles (PVs)
= low penetration rate Nprobes <K Niotal
= recover density p from limited trajectories
@ Requires access to real-time positions, densities and instantaneous speeds of PVs

@ Prior approaches rely on knowledge of initial density p
= No access to this critical information, need to leverage available data

5Barreau, Aguiar, Liu, and Johansson 2021.
b4 > 0is a diffusion correction parameter. Hopf proved that as ~ tends to zero, the solution of LWR with
diffusion term converges in the sense of distributions to the solution of classical LWR.
"Liu, Barreau, Cicic, and Johansson 2020.
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Parametrized Microscopic Model

o Limited data scenario = only initial and final {(x",7")}"  positions of PVs
o Enhanced version of FtL scheme (5) adding a parameter
= o accounts for unobserved vehicles between consecutive PVs

= adjusts dynamics and allows varying levels of response
= bridges discrete (vehicle-level) dynamics to continuous (density-level) dynamics
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Parametrized Microscopic Model

o Limited data scenario = only initial and final {(x",7")}"  positions of PVs

o Enhanced version of FtL scheme (5) adding a parameter

= o accounts for unobserved vehicles between consecutive PVs

= adjusts dynamics and allows varying levels of response

= bridges discrete (vehicle-level) dynamics to continuous (density-level) dynamics

o Parametrized ODE system with finite time horizon

Xp' (£) = Viax, te (0, 7]

M) = v (pl'(t)), te(0,T] i=0,---,n—1

XIN(O):)_(iNv iZO,"',n

= local discrete densities
N
a;'L
pr(t) = —— <
N (x,.H(t) — x! (t))

i
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Parametrized Microscopic Model

o Limited data scenario = only initial and final {(x",7")}"  positions of PVs

o Enhanced version of FtL scheme (5) adding a parameter
= o accounts for unobserved vehicles between consecutive PVs
= adjusts dynamics and allows varying levels of response

= bridges discrete (vehicle-level) dynamics to continuous (density-level) dynamics

o Parametrized ODE system with finite time horizon

X' () = Vimax, t€(0,T]
Mt)y=v(pM(t)), te(0,T] i=0,---,n—1
XIN(O):)_(iNv IZO, s N

= local discrete densities
alL

plN(t)::N(Xﬁl(t)—xl.N(t))’ te(0,T], i=0,---,n—1

@ Piecewise constant Eulerian discrete density
N—1
N . N
po(t,x) = Zpi (t)X[xl.’V(t),xl.’il(t))(X)v xeR, te[0,T]
i=0
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Well Posedness

@ Assumptions on velocity

v e C([0,4+00))
v is decreasing on [0, +00)

V(O) = Vmax < 00

N.B, AH, T.L, P.L (CERMICS, ENPC) Traffic Flow Reconstruction

October, 6th 2025
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Well Posedness

@ Assumptions on velocity

v e C'([0,+00)) (12a)
v is decreasing on [0, +00) (12b)
v(0) = Vimax < 00 (12¢)

@ Local existence and uniqueness of solution to (9) (for fixed «) via Picard-Lindelof
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Well Posedness

@ Assumptions on velocity

v e C([0,+00)) (12a)
v is decreasing on [0, +00) (12b)
V(0) = Vinax < o0 (12¢)

@ Local existence and uniqueness of solution to (9) (for fixed «) via Picard-Lindelof
@ Condition on initial car positions iév < >_<1N <K >_<AV_1 < )"(,’,V
= global existence

Lemma (Discrete maximum principle)

For solution x(t) of (9) with v satisfying (12a)-(12c), for all i =0,--- ,n—1,

N
%’ML <xNa(t) = xM(t) < XY — %+ (Vimax — v(M)) £, Yt €0, T], (13)

alNL
where M = maxX; m
i+1 %
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Sketch of proof

@ Lower bound is satisfied at t = 0, aim at extending property for all times up to T
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Sketch of proof

@ Lower bound is satisfied at t = 0, aim at extending property for all times up to T

@ Equivalent to show

N
. o L.

; —x(t)] > ==, i=0,...,n—1.
0<|?£T[X'H(t) xi(t)] /AN 0,...,n—1 (14)

= recursive argument (backward from n — 1 to 0)
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Sketch of proof

@ Lower bound is satisfied at t = 0, aim at extending property for all times up to T

@ Equivalent to show

N
. o L.

; —x(t)] > ==, i=0,...,n—1.
0<|?£T[X'H(t) xi(t)] /AN 0,...,n—1 (14)

= recursive argument (backward from n — 1 to 0)

o Property is true for i =n—1

Xn(t) = Xn-1(t) =% — Xp-1 + /Ot (Vmax -V <N(Xn(s)aﬁvi<n—1(5))>) *

Oz,,N,lL
NM

2)_(n - )_(n—l 2
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Sketch of proof

@ Lower bound is satisfied at t = 0, aim at extending property for all times up to T

Equivalent to show

N
. o L.
; —x(t)] > ==, i=0,...,n—1.
0<|?£T[X'H(t) xi(t)] /AN 0,...,n—1 (14)

= recursive argument (backward from n — 1 to 0)

Property is true for i = n—1

Xn(t) = Xn-1(t) =% — Xp-1 + /Ot (Vmax -V <N(Xn(s)aﬁvi<n—1(5))>> *

Oz,,N,lL
NM

Z)_(n - )_(n—l 2

@ Assume property is verified for j + 1 and prove it is still satisfied for j
N
. ajiq L
oI Dga(t) = xa (0] > (15)

N.B, AH, T.L, P.L (CERMICS, ENPC) Traffic Flow Reconstruction October, 6th 2025 13 /39



Sketch of proof

@ By contradiction, assume that there exists 0 < t; < t» such that

xia(t) = x(t) = T, t<th
. ()=t (16)
X1(t) = xi(t) = 77, t=1t

xii1(t) = xi(t) < F, b <t<t.
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Sketch of proof

@ By contradiction, assume that there exists 0 < t; < t» such that

N

L
xia(t) = x(t) = T, t<th
. ()=t (16)
Xj+l(t) - Xj(t) - NA/)/M t=t

Ny
xii1(t) = xi(t) < F, b <t<t.

@ Since v is decreasing

t aJI-VL
03109+ [+ (st @ )

<xj(t1) + v (M) (t = t),
@ Moreover from (15), for ty < t < ty,

91(6) =5ea(t) /t: Y (N(Xj+2(oséj)'+il_xj+1(s))> e

>xj+1(t1) + v (M) (t — t1)

OCJI-VL
= x41(t) — xi(t) >x11(t1) — x(t1) =

NM
which contradicts (16), so that (14) is satisfied.

N.B, AH, T.L, P.L (CERMICS, ENPC)

Traffic Flow Reconstruction October, 6th 2025 14 /39



Sketch of proof

@ Show upper bound for i=0,...,n—1and t € [0, T]

@ Recalling assumptions on v and applying system’s dynamics

xi1() = xi(t) = x:41(0) — xi(0) + / (1105 — 5(s)) s

<Kij1 — X + /Ot (Vmax -V (W)) %*

§>_<n - )_<O + (Vmax - V(M)) t,

o Last equality is obtained from lower bound = proof is complete
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ODE-Contrained Optimization
@ Physical conditions on o := " induce feasible set

n—1
Ay =<acR": a;G[LZN], i=0,...,n—1, Za;:N
i=0

_— NN =N NN N .
W|thz,-N::m|n{ (’“L ’), (’“L ) , i=0,...,n—1

8Baloul, Hayat, Liard, and Lissy 2025.
N.B, AH, T.L, P.L (CERMICS, ENPC) Traffic Flow Reconstruction October, 6th 2025
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ODE-Contrained Optimization

@ Physical conditions on o := " induce feasible set

n—1
AN:_{aGR”: a;G[LZN], i=0,...,n—1, Za,—-N} (17)
i=0

=N L NEN =N NN - .
with Z; .:mm{ (“L ), (“L ) , i=0,...,n—1
o Approximate density reconstruction® =- find optimal interaction parameter o

minimize % Ix(T) — }7H2

st x(t) = V (Wax(t) + ba(t)) (18)
x(0) = x
a € Ay

8Baloul, Hayat, Liard, and Lissy 2025.
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ODE-Contrained Optimization

@ Physical conditions on o := " induce feasible set

n—1
AN:_{aGR”: a;G[LZN], i=0,...,n—1, Za,—-N} (17)
i=0

=N L NEN =N NN - .
with Z; .:mm{ (“L ), (“L ) , i=0,...,n—1
o Approximate density reconstruction® =- find optimal interaction parameter o

minimize % Ix(T) — }7H2

st x(t) = V (Wax(t) + ba(t)) (18)
x(0) = x
a € Ay

@ Existence of solutions guaranteed by assumptions on V := v o 1 (continuity of v)

and constraints on « (compactness of Ay)

8Baloul, Hayat, Liard, and Lissy 2025.
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ODE-Contrained Optimization

@ Physical conditions on o := " induce feasible set

n—1
AN:_{aGR”: a;G[LZN], i=0,...,n—1, Za,—-N} (17)
i=0

=N L NEN =N NN - .
with Z; .:mm{ (“L ), (“L ) , i=0,...,n—1
o Approximate density reconstruction® =- find optimal interaction parameter o

minimize % Ix(T) — }7H2

st x(t) = V (Wax(t) + ba(t)) (18)
x(0) = x
a € Ay

@ Existence of solutions guaranteed by assumptions on V := v o 1 (continuity of v)

and constraints on « (compactness of Ay)

@ No uniqueness (a priori) since nonlinear dynamics can lead to multiple minima

8Baloul, Hayat, Liard, and Lissy 2025.
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Learning Method

o Dataset consists of artificial data based on simulated (classical) FtL dynamics (5)

@ Sampling of PVs yielding a balanced representation of overall traffic
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Learning Method

o Dataset consists of artificial data based on simulated (classical) FtL dynamics (5)
@ Sampling of PVs yielding a balanced representation of overall traffic
o Neural network architecture designed to understand dynamics of traffic
@ Residual network (ResNet) where each block corresponds to a single time step
@ Input X and state x(.) is propagated by mirroring Euler discretization
x(t+ At) = x(t) + V(Wx(t) + b)At (19)
o Weights and biases W, b are functions of «
W, =-2i=0,...,n-1,
VVi,i+1 = all.l_ai:l7"-,n_27 (20)
Wi = 0, otherwise,
bi(t) == 6.0 (vt + %)), t€(0,T] (21)
an_1l_

@ Nonlinear dynamic map V acts as physics grounded activation function

@ Backpropagation to minimize predictions errors %ZJ'.':0|XJQ(T) e/ ih
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Neural Network for Constrained Optimization

Learning Architecture

Parameter update
[Neural Network Parameter oa]( ----------------

[Fixed Discretization Step Atj

Residual Block i

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

b

[Dynamics fo (X, IA t)]

:

[Next State xk+1 = xk + fa(Xt, iAt)At]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, [Optimization a—a— nVQL‘j
[Repeat for all k = iAtj 0

1
1
| Auto-differentiation
1
1

Final State x(T) Prediction. | 4es £(x(T).7)

— Forward process

- -» Backward propagation
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Model validation

@ Through predicted parameter &, training yields piecewise constant discrete density

Q; L
Z N(X (t))X[X/N(t)’X/,\JIrl(t))(XL S R7 te [07 T]? (22)

I+1
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Model validation

@ Through predicted parameter &, training yields piecewise constant discrete density

Q; L
Z N(X (t))X[X/N(t)’X/,\JIrl(t))(XL S R7 te [0? T]? (22)

I+1
@ Simulation on test data by solving ODE system

{)'(,N(t) = v ("(t,x(t)")), te(0,T]

23
XiN(O) = >_<IN I - 07 <oy Ntest ( )
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Model validation

@ Through predicted parameter &, training yields piecewise constant discrete density

Q; L
Z N(X (t))X[X/N(t)’X/,\JIrl(t))(XL S R7 te [0? T]? (22)

I+1

@ Simulation on test data by solving ODE system

() = v (Mex()),  te (T,
{X,-N(O) —_ >—<IN i=0,..., Ngest (23)

@ Assess model's performance by measuring test erro St (T) = g2

es
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Outline of Convergence Analysis

@ Prove that, if only using data from dynamical systems, approximate density pN
predicted by our machine learning model converges to solution of the LWR model
(6) when the number of vehicles approaches infinity
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Outline of Convergence Analysis

@ Prove that, if only using data from dynamical systems, approximate density pN
predicted by our machine learning model converges to solution of the LWR model

(6) when the number of vehicles approaches infinity
@ Main challenge lies in imposing a condition on distribution of a which would
guarantee convergence
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in the LWR model (6) under this additional assumption

N.B, AH, T.L, P.L (CERMICS, ENPC) Traffic Flow Reconstruction October, 6th 2025 21/39



Outline of Convergence Analysis

@ Prove that, if only using data from dynamical systems, approximate density pN
predicted by our machine learning model converges to solution of the LWR model
(6) when the number of vehicles approaches infinity

@ Main challenge lies in imposing a condition on distribution of a which would
guarantee convergence

@ Demonstrate that discrete initial density p" (0, -) converges to the initial condition
in the LWR model (6) under this additional assumption

o In addition to Euler discrete density (11), consider empirical discrete density

Mt = %ia,f”csx,,(t)(.), telo, T). (24)
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Outline of Convergence Analysis

@ Prove that, if only using data from dynamical systems, approximate density pN
predicted by our machine learning model converges to solution of the LWR model
(6) when the number of vehicles approaches infinity

@ Main challenge lies in imposing a condition on distribution of a which would
guarantee convergence

@ Demonstrate that discrete initial density p" (0, -) converges to the initial condition
in the LWR model (6) under this additional assumption

o In addition to Euler discrete density (11), consider empirical discrete density

Mt = %ia,f”csx,,(t)(.), telo, T). (24)

o Important observation: by construction, initial traffic density must satisfy

X iL .
)’<;+1:sup{xeR:/ﬁ(y)dygaN}, i=0,...,n—1 (25)

i

= although no access to ground-truth initial car density p, initial positions x; of
probe vehicles verify (25) (i.e. number of unobserved vehicles between [x;, xj;1) is
given by «;)
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Convergence Result

o Weak solution of (6) is entropy admissible if it satisfies Kruzhkov entropy condition

T d 9
/O /R\u - k%5 + sign(u — K)(F(u) — f(k))a—fdxdt >0, VKeR  (26)

Theorem Convergence of approximate density to solution of LWR

Under some assumptions, piecewise-constant density

n—1

_N
N _ a; L
P00 = D (0 — ) o) xERteln Tl @)

where & € Ay is a solution to (18) converges to unique entropy solution p of

%, . OF(p)
ot (£,x) + Ox

p(0,x) = p(x), x€R

(t,x)=0, x€eR, te]o0,T], (28)
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Convergence Result

o Weak solution of (6) is entropy admissible if it satisfies Kruzhkov entropy condition

T d 9
/O /R\u - k%5 + sign(u — K)(F(u) — f(k))a—fdxdt >0, VKeR  (26)

Theorem Convergence of approximate density to solution of LWR

Under some assumptions, piecewise-constant density

n—1

_N
N _ a; L
P00 = D (0 — ) o) xERteln Tl @)

where & € Ay is a solution to (18) converges to unique entropy solution p of

%, . OF(p)
ot (£,x) + Ox

p(0,x) = p(x), x€R

(t,x)=0, x€eR, te]o0,T], (28)

@ Impose a condition that ensures controlled growth of ay
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Sketch of proof
o Ensures discretization aligns consistently with true initial density when N — oo

o Notations: for t € [0, T], p(t) :== p(t,-) and p(t) = p(t, ).
In particular, at t = 0, p(0) := p(0, ) and p(0) == p(0,-)
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Sketch of proof

o Ensures discretization aligns consistently with true initial density when N — oo

o Notations: for t € [0, T], p(t) :== p(t,-) and p(t) = p(t, ).
In particular, at t = 0, p(0) := p(0, ) and p(0) == p(0,-)
o Use Wasserstein distance defined in Di Francesco and Rosini 2015 by

Wea(f,g) = [If(] = o0, ]) — &(] = 00, ez (29)

Proposition

Let p satisfy (25) and assume that
max ) = o(N) (30)

i=0,...,n—1

Then, both sequences (p"(0))nen and (5" (0))nen converge to j in the sense of the W, 1
-Wasserstein distance in (29)

A particular case of assumption (30) is when maxi—g, .. ,1 ) < Iog% for some C >0

— =T = = = ETA
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Sketch of proof

o Using Iy == L/N, W 1- distance and discrete density in (10)

n—1 <N
Xit1
Wia(r"(0)."0) =3 [ (al'hy — 6 (x - %)) o
i=0 X
n—1 Xit1 %
:Zaf"/,\,/ ’ (1—%) dx (31)
i=0 Xi XL = X

<, max {od"}Hn (R0 — %)
i=0,...,n

5

= it suffices to prove that (5"(0))sen converges to 5 wrt W, ;- distance
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Sketch of proof

o Using Iy == L/N, W 1- distance and discrete density in (10)

n—1 <N
Xit1
Wia(p"(0.2"0) = [ (k- () (x - %)) o
i=0 X
n—1 Xit1 %
:Zaf"/,\,/ ’ (1—%) dx (31)
i=0 %i X = Xi

< max {aM}In (%0 — %0)
i=0,...,n

5

= it suffices to prove that (5"(0))sen converges to 5 wrt W, ;- distance
@ Using expressions of both Euler (11) and empirical (24) discrete densities

W1(5"(0), p)

g/;ﬂ (1_20 o Iy — /_XOo ﬁ(y)dy> dx + /;nl (L - /_Xoo ﬁ(y)dy) dx

— n‘_ /:“ ((i af Iy — /X ﬁ(y)dy> + <O¢,N/N - /XX ﬁ(y)dy>> dx

j=0 X0 i
Xn -2 Xn—1 X

+ / < o Iy — / ﬁ(y)dy> + (a’nvllw - / ﬁ(y)dy> dx
Xn—1 \ j=0 X0 Xn—1
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Sketch of proof

@ From atomization of initial density (25), deduce

Wea(p"(0), )

=2 X x Xn x
<>/ (a,-”/N— / ﬁ(y)dy) det | (an”lm / ﬁ(y)d)/> dx
i=0 Y Xi Xi Xn—1 Xn—1

n-1 Rit1 1 x
:Za,’-VIN/ (1 — T// ﬁ(y)dy) dx
i—0 % & IN Iz

< max {a,’-v} In(Xn — Xo)
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Sketch of proof

@ From atomization of initial density (25), deduce

Wea(p"(0), )

=2 X x Xn x
<>/ (a,-”/N— / ﬁ(y)dy) det | (an”lm / ﬁ(y)d)/> dx
i=0 Y Xi Xi Xn—1 Xn—1

n-1 Rit1 1 x
:Za,’-VIN/ (1 — T// ﬁ(y)dy) dx
i—0 % & IN Iz

,,,,,

o From assumption (30) and estimate (31), conclude that (p"(0))nen converges to
in sense of W 1-Wasserstein distance
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Sketch of proof

@ From atomization of initial density (25), deduce

Wea(p"(0), )

=2 X x Xn x
<>/ (a,-”/N— / ﬁ(y)dy) det | (an”lm / ﬁ(y)dy> dx
i=0 Y Xi Xi Xn—1 Xn—1

n-1 Rit1 1 x
:ZafVlN/ (1 — T// ﬁ(y)dy) dx
i—0 % & IN Iz

o From assumption (30) and estimate (31), conclude that (p"(0))nen converges to
in sense of W 1-Wasserstein distance

@ Moreover, by leveraging expression of discrete density (11), generalize convergence
to unique entropy solution of conservation law (6), referring to Di Francesco and
Rosini 2015, Theorem 3 = require only minor modifications to original arguments
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Numerical experiments

o Parameters

o Maximum traffic speed Vmax = 120 km/h
o Maximum traffic density pmax = 200 cars/km

o Greenshields velocity v(p) = Vmax max {1 —— 0} , p €0, pmax]

s
Pmax

o Final time horizon T = 0.1 h

@ Sampling such 10% of total fleet serve as PVs for training and 2.5% for testing
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Numerical experiments

o Parameters

o Maximum traffic speed Vmax = 120 km/h
o Maximum traffic density pmax = 200 cars/km

s
Pmax

o Greenshields velocity v(p) = Vmax max {1 —— 0} , p €0, pmax]
o Final time horizon T = 0.1 h

@ Sampling such 10% of total fleet serve as PVs for training and 2.5% for testing
@ Three traffic scenarii modelled

@ Shock wave represents an abrupt transition in traffic conditions
@ Rarefaction wave represents a smooth transition in traffic condition
Q characterized by
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Shock wave scenario

(a) N = 1000

Comparison of predicted and target final PV positions
Top Results from training procedure
Bottom Results on test sounds
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Shock wave scenario

(a) N = 1000 (b) N = 2000

Comparison of predicted and target final PV positions
Top Results from training procedure
Bottom Results on test sounds
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Shock wave scenario

(a) N = 1000 (b) N = 2000 (c) N = 3000

Comparison of predicted and target final PV positions
Top Results from training procedure
Bottom Results on test sounds
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Shock wave scenario

(a) N = 1000

Comparison of reconstructed and macroscopic densities
Top Initial densities
Bottom Final densities
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Shock wave scenario

(b) N = 2000

Comparison of reconstructed and macroscopic densities
Top Initial densities
Bottom Final densities
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Shock wave scenario

(a) N = 1000

Comparison of reconstructed and macroscopic densities
Top Reconstructed density from learning-based optimization
Bottom Macroscopic density from LWR PDE (Godunov scheme)
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Rarefaction wave scenario

Comparison of predicted and target final PV positions
Top Results from training procedure
Bottom Results on test sounds
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Rarefaction wave scenario

(a) N = 1000 (b) N = 2000 (c) N = 3000

Comparison of predicted and target final PV positions
Top Results from training procedure
Bottom Results on test sounds
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Rarefaction wave scenario

(a) N = 1000

Comparison of reconstructed and macroscopic densities
Top Initial densities
Bottom Final densities
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Rarefaction wave scenario

(b) N = 2000

Comparison of reconstructed and macroscopic densities
Top Initial densities
Bottom Final densities

N.B, AH, T.L, P.L (CERMICS, ENPC) Traffic Flow Reconstruction October, 6th 2025 31/39



Rarefaction wave scenario

(a) N = 1000 (b) N = 2000 (c) N = 3000

Comparison of reconstructed and macroscopic densities
Top Initial densities
Bottom Final densities

N.B, AH, T.L, P.L (CERMICS, ENPC) Traffic Flow Reconstruction October, 6th 2025 31/39



Rarefaction wave scenario

(a) N = 1000

Comparison of reconstructed and macroscopic densities
Top Reconstructed density from learning-based optimization
Bottom Macroscopic density from LWR PDE (Godunov scheme)
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Stop-and-go wave scenario

Comparison of predicted and target final PV positions
Top Results from training procedure
Bottom Results on test sounds
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Stop-and-go wave scenario

(a) N = 1000 (b) N = 2000 (c) N = 3000

Comparison of predicted and target final PV positions
Top Results from training procedure
Bottom Results on test sounds

N.B, AH, T.L, P.L (CERMICS, ENPC) Traffic Flow Reconstruction October, 6th 2025 33/39



Stop-and-go wave scenario

(a) N = 1000

Comparison of reconstructed and macroscopic densities
Top Initial densities
Bottom Final densities
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Stop-and-go wave scenario

(b) N = 2000

Comparison of reconstructed and macroscopic densities
Top Initial densities
Bottom Final densities
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Stop-and-go wave scenario

(a) N = 1000

en—"

(b) N = 2000

(c) N = 3000

Comparison of reconstructed and macroscopic densities

Top Initial densities
Bottom Final densities
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Stop-and-go wave scenario

(a) N = 1000

Comparison of reconstructed and macroscopic densities
Top Reconstructed density from learning-based optimization
Bottom Macroscopic density from LWR PDE (Godunov scheme)
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Conclusion

Traffic State Reconstruction Approaches

o Model-Based Method
= uses microscopic and macroscopic models
= provides theoretical guarantees
= struggles to capture real-world complexities

o Data-Driven Method
= learns patterns directly from measurement data
= derives system properties or predicts near-future states
= requires extensive data for effectiveness

@ Our Approach
= combines models and data to address sparsity and improve realism
= Integrates physical priors with data observations
= achieves reliable traffic reconstruction with limited observations
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Perspectives

@ Conservation law with unilateral constraint® (toll gate)

LWR PDE (6) with (32)
f(p(t,0)) < q(1), t>0.
o Conservation law with moving bottleneck® (slow vehicle)
LWR PDE (6) with
F(p(t, y(£))) = 7(D)p(t, y(2)) < Gom= (vimax — ¥(1))*,  £>0, (33)
y(t) = w (p(t,y(t)+)) t>0,
¥(0) = yo
° 1 12 J and N incoming roads and M outgoing ones
Oepi(t, x) + Ok (f(pi(t,x))) =0, t>0, xel, I=1...,N+M (34)
pi(0,x) = po,i(x),
= (Rankine Hugoniot)
mf (ot (b)) | Bst £ (o (a)4)) = iy aif (pil (b))

Colombo and Goatin 2007.
L jard and Piccoli 2021.
' Monneau 2024.
2Coclite, Piccoli, and Garavello 2005.
3Garavello and Piccoli 2006.
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