
Université Paris-Saclay

Institut de Mathématique d’Orsay

Internship Report

Conducted at ENSTA Paris

02 April 2024 - 30 August 2024

Algorithms for constrained optimization
problems

Nail Baloul

Master 2, Optimization, Université Paris-Saclay

ENSTA Paris
828 Bd des Maréchaux
91120 Palaiseau, France

Internship Tutor (ENSTA)
Professor Sorin-Mihai Grad
Referent Teacher (IMO)
Professor Quentin Mérigot

Version of September 4, 2024

Abstract

This report provides a brief overview of the optimization techniques applied to facility location
and portfolio management problems during my internship at ENSTA Paris from April 2 to August
30, under the supervision of Professor Sorin-Mihai Grad. The focus is on tackling these complex
optimization challenges through the use of splitting proximal point methods and other approaches
that broadly rely on the proximal operator, which offer a robust framework for efficiently solving
large-scale optimization problems. The report highlights the methodology, implementation, and
outcomes of applying these techniques in practical scenarios, demonstrating their effectiveness and
potential applications in real-world contexts.

Contents

List of figures . 3
List of tables . 6
Introduction . 7
0.1 Background . 7
0.2 Objectives . 7
0.3 Structure of the report . 8

1 Preliminaries 9
1.1 Basic notions related to constrained optimization . 9
1.2 Duality . 14

2 Facility location optimization 18
2.1 Basic concepts related to location problems . 18
2.2 Position of the problem . 20
2.3 Duality results . 21
2.4 Special cases . 24

2.4.1 Special case one . 25
2.4.2 Special case two . 26

2.5 Algorithms . 26
2.5.1 Chambolle-Pock algorithm . 27
2.5.2 Mirror descent algorithm . 37

2.6 Numerical experiments . 40
2.7 Discussion . 52
2.8 Perspectives on facility location optimization problems 53

2.8.1 Perspectives related to the Chambolle-Pock algorithm 53
2.8.2 Perspectives related to the mirror descent algorithm 55
2.8.3 Perspectives related to the parallel splitting algorithms 56

3 Entropy and portfolio optimization 62
3.1 Some elements on modern portfolio theory . 62
3.2 Risk measures and Portfolio Optimization . 63

3.2.1 Risk measures and EVaR . 63
3.2.2 Portfolio Optimization with EVaR . 63

3.3 Portfolio optimization via splitting . 64
3.3.1 General case . 64
3.3.2 Special case . 69

3.4 Numerical Experiments . 73
3.5 Discussion . 80

1

CONTENTS 2

3.6 Perspectives on parallel splitting methods for entropy optimization 80
Conclusion . 81
Appendix . ii
Bibliography . vii

List of Figures

2.1 Visualization of an optimal solution to problem (d = 2, n = 3) via Chambolle-Pock
and mirror descent methods . 42

2.2 Visualization of an optimal solution to problem (d = 2, n = 10) via Chambolle-Pock
and mirror descent methods . 45

2.3 Visualization of an optimal solution to problem (d = 2, n = 100) via Chambolle-Pock
and mirror descent methods . 47

2.4 Visualization of an optimal solution to problem (d = 3, n = 7) via Chambolle-Pock
and mirror descent methods . 49

2.5 Visualization of an optimal solution to problem (d = 3, n = 50) via Chambolle-Pock
and mirror descent methods . 51

2.6 Visualization of an optimal solution to of problem (d = 3, n = 100 via Chambolle-
Pock method) . 53

2.7 Visualization of an optimal solution to problem (d = 2, n = 7) via parallel splitting
and mirror descent methods . 57

3.1 Convergence of the objective value of problem (n = 10,m = 10) via parallel splitting
and primal-dual interior point methods . 75

3.2 Convergence of the optimal solution of problem (n = 10,m = 10) via parallel split-
ting and primal-dual interior point methods . 75

3.3 Convergence of the objective value of problem (n = 15,m = 15) via parallel splitting
and primal-dual interior point methods . 77

3.4 Convergence of the optimal solution of problem (n = 15,m = 15) via parallel split-
ting and primal-dual interior point methods . 77

3

List of Tables

2.1 Comparison of splitting and Chambolle-Pock methods (d = 2, n = 3) for ϵ1 = 10−3 . 41
2.2 Comparison of splitting and Chambolle-Pock methods (d = 2, n = 3) for ϵ2 = 10−4 . 41
2.3 Comparison of splitting and Chambolle-Pock methods (d = 2, n = 3) for ϵ3 = 10−6 . 41
2.4 Comparison of splitting and Chambolle-Pock methods (d = 2, n = 3) for ϵ4 = 10−8 . 41
2.5 Performance of the mirror descent method with (d = 2, n = 3) for ϵ4 = 10−8 41
2.6 Performance of the mirror descent method with (d = 2, n = 3) for ϵ4 = 10−8 42
2.7 Performance of the mirror descent method with (d = 2, n = 3) for ϵ4 = 10−8 42
2.8 Comparison of splitting and mirror descent methods (d = 2, n = 3) for ϵ1 = 10−3 . . 43
2.9 Comparison of splitting and mirror descent methods (d = 2, n = 3) for ϵ2 = 10−4 . . 43
2.10 Comparison of splitting and mirror descent methods (d = 2, n = 3) for ϵ3 = 10−6 . . 43
2.11 Comparison of splitting and mirror descent methods (d = 2, n = 3) for ϵ4 = 10−8 . . 43
2.12 Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 2, n =

10) for ϵ1 = 10−3 . 44
2.13 Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 2, n =

10) for ϵ2 = 10−4 . 44
2.14 Comparison of splitting and Chambolle-Pock methods (d = 2, n = 10) for ϵ3 = 10−6 44
2.15 Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 2, n =

10) for ϵ4 = 10−8 . 44
2.16 Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 2, n =

100) for ϵ1 = 10−3 . 46
2.17 Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 2, n =

100) for ϵ2 = 10−4 . 46
2.18 Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 2, n =

100) for ϵ3 = 10−6 . 46
2.19 Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 2, n =

100) for ϵ4 = 10−8 . 47
2.20 Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 3, n = 7)

for ϵ1 = 10−3 . 48
2.21 Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 3, n = 7)

for ϵ2 = 10−4 . 48
2.22 Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 3, n = 7)

for ϵ3 = 10−6 . 48
2.23 Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 3, n = 7)

for ϵ4 = 10−8 . 48
2.24 Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 3, n =

50) for ϵ1 = 10−3 . 50

4

LIST OF TABLES 5

2.25 Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 3, n =
50) for ϵ2 = 10−4 . 50

2.26 Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 3, n =
50) for ϵ3 = 10−6 . 50

2.27 Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 3, n =
50) for ϵ4 = 10−8 . 50

2.28 Comparison of splitting and Chambolle-Pock methods (d = 3, n = 100) for ϵ1 = 10−3 51
2.29 Comparison of splitting and Chambolle-Pock methods (d = 3, n = 100) for ϵ2 = 10−4 51
2.30 Comparison of splitting and Chambolle-Pock methods (d = 3, n = 100) for ϵ3 = 10−6 52
2.31 Comparison of splitting and Chambolle-Pock methods (d = 3, n = 100) for ϵ4 = 10−8 52
2.32 Comparison of splitting and mirror descent methods (d = 2, n = 7) for ϵ1 = 10−3 . . 55
2.33 Comparison of splitting and mirror descent methods (d = 2, n = 7) for ϵ2 = 10−4 . . 56
2.34 Comparison of splitting and mirror descent methods (d = 2, n = 7) for ϵ3 = 10−6 . . 56
2.35 Comparison of splitting and mirror descent methods (d = 2, n = 7) for ϵ4 = 10−8 . . 56
2.36 Comparison of primal and dual splittings methods with their inertial versions (d =

2, n = 3) for ϵ1 = 10−3 . 58
2.37 Comparison of primal and dual splittings methods with their inertial versions (d =

2, n = 10) for ϵ2 = 10−4 . 58
2.38 Comparison of primal and dual splittings methods with their inertial versions (d =

2, n = 10) for ϵ3 = 10−6 . 59
2.39 Comparison of primal and dual splittings methods with their inertial versions (d =

2, n = 10) for ϵ4 = 10−8 . 59
2.40 Comparison of primal and dual splittings methods with their inertial versions (d =

2, n = 20) for ϵ1 = 10−3 . 60
2.41 Comparison of primal and dual splittings methods with their inertial versions (d =

2, n = 20) for ϵ2 = 10−4 . 60
2.42 Comparison of primal and dual splittings methods with their inertial versions (d =

2, n = 20) for ϵ3 = 10−6 . 60
2.43 Comparison of primal and dual splittings methods with their inertial versions (d =

2, n = 20) for ϵ4 = 10−8 . 60

3.1 Comparison of splitting and primal-dual interior point methods (n = 10,m = 10)
for ϵ1 = 10−3 . 74

3.2 Comparison of splitting and primal-dual interior point methods (n = 10,m = 10)
for ϵ2 = 10−4 . 74

3.3 Comparison of splitting and primal-dual interior point methods (n = 10,m = 10)
for ϵ3 = 10−6 . 74

3.4 Comparison of splitting and primal-dual interior point methods (n = 10,m = 10)
for ϵ4 = 10−8 . 74

3.5 Comparison of splitting and primal-dual interior point methods for ϵ1 = 10−3 76
3.6 Comparison of splitting and primal-dual interior point methods (n = 15,m = 105)

for ϵ2 = 10−4 . 76
3.7 Comparison of splitting and primal-dual interior point methods (n = 15,m = 15)

for ϵ3 = 10−6 . 76
3.8 Comparison of splitting and primal-dual interior point methods (n = 15,m = 15)

for ϵ4 = 10−8 . 76
3.9 Comparison of splitting and primal-dual interior point methods (n = 10,m = 5) for

ϵ1 = 10−3 . 78

LIST OF TABLES 6

3.10 Comparison of splitting and primal-dual interior point methods (n = 10,m = 5) for
ϵ2 = 10−4 . 78

3.11 Comparison of splitting and primal-dual interior point methods (n = 10,m = 5) for
ϵ3 = 10−6 . 78

3.12 Comparison of splitting and primal-dual interior point methods (n = 10,m = 5) for
ϵ4 = 10−8 . 78

3.13 Comparison of splitting and primal-dual interior point methods (n = 5,m = 10) for
ϵ1 = 10−3 . 79

3.14 Comparison of splitting and primal-dual interior point methods (n = 5,m = 10) for
ϵ2 = 10−4 . 79

3.15 Comparison of splitting and primal-dual interior point methods (n = 5,m = 10) for
ϵ3 = 10−6 . 79

3.16 Comparison of splitting and primal-dual interior point methods (n = 5,m = 10) for
ϵ4 = 10−8 . 79

Introduction

0.1 Background

In this internship report, I will be describing and reflecting on my five month long internship at
ENSTA Paris. This research work which was conducted under the supervision of Sorin-Mihai Grad,
Professor at ENSTA Paris, is part of my second-semester curriculum for the Master 2 program in
Optimization at Université Paris-Saclay. During the internship, we studied multiple algorithms
to solve constrained optimization problems. We insisted on the implementation of methods which
enable us to transform our initial constrained problem into an unconstrained optimization problem.
Thus, we had to deal with the introduction in the objective function of indicator functions of the
feasible regions.
A very important concept on which relies our work is duality theory. Indeed, conjugate duality
provides useful results that give valuable insights into the solutions to our considered problems.
A crucial tool used exhaustively during our proceedings is the proximal operator which delivers
properties and simplifications underpinning our eventual numerical experiments.
Several numerical methods were considered in the context of both facility location problems and
entropy optimization. The algorithms presented in this report showcased various degrees of effi-
ciency depending on the scale and the complexity of the problem and the constraints undermining
it.

0.2 Objectives

The primary objectives of my work encompass both theoretical insights and a strong focus on
numerical applications.

� The first goal was to conduct a in-depth review of optimization methods for solving un-
constrained problems, with a particular focus on proximal splitting methods. This included
assessing the performance of parallel primal and dual splitting methods specifically in the
context of location problems. The analysis involved testing these algorithms across various
examples and exploring the potential implementation of inertial methods to enhance perfor-
mance.

� The second objective was to identify and evaluate alternative methods that not only solve
the problem but also potentially offer better results. This involved an explicit comparison of
different methods, highlighting their respective advantages and inconveniences. The focus was
on two particular methods, the Chambolle-Pock algorithm and the mirror descent method.

� The third objective aimed at generalizing certain theoretical results, particularly those re-
lated to the explicit formulation of the proximal operator for some functions involved in the

7

0.3. STRUCTURE OF THE REPORT 8

objective. If formulating new results proved challenging, the goal was to clearly explain the
difficulties encountered.

� Finally, the fourth aim was to assess the performance of parallel splitting methods in the
context of portfolio optimization. This included a comparison of their efficiency with a primal-
dual interior point method that has been proposed in the literature.

0.3 Structure of the report

� The first chapter of this report covers all preliminary concepts related to optimization em-
phasizing the key tools for constrained optimization that will be employed in the subsequent
chapters. It provides essential foundational elements, including well-known results and the
necessary framework for our analysis.

� The second chapter is dedicated to solving facility location problems and introduces as well
as implements numerical methods specifically designed for this purpose. We will also explore
certain theoretical results within the same context.

� The third and final chapter presents our work on the application of splitting methods based
on the proximal operator in the context of portfolio optimization, along with their numerical
implications.

Chapter 1

Preliminaries

While many of the following definitions and results can be applied in broader contexts, such as
Banach spaces or even Hausdorff locally convex spaces, we will concentrate on Hilbert spaces to
ensure a unified presentation and because our numerical experiments were conducted within this
framework. We will identify the dual spaces of the Hilbert spaces with the spaces themselves, in
accordance with the Riesz–Fréchet representation theorem.
Let X be a nonempty Hilbert space and set R̄ := R ∪ {−∞,+∞}.

1.1 Basic notions related to constrained optimization

Let f : X → R̄ a be an extended real-valued function.

Definition 1.1.1. Let A be a subset of X.

� The indicator function of A denoted δA : X → R̄ is defined by

δA(x) :=

{
0, if x ∈ A,
+∞, otherwise.

� The support function of A denoted σA : X → R̄ is defined by

σA(x) := sup
x∗∈A
⟨x∗, x⟩.

Definition 1.1.2. � The domain of f is domf := {x ∈ X : f(x) < +∞}.

� The graph of f is graf := {(x, t) ∈ X × R : f(x) = t}.

� The epigraph of f is epif := {(x, t) ∈ X × R : f(x) ≤ t}.

Definition 1.1.3. � The function f is proper if for all x ∈ X, f(x) > −∞ and domf ̸= ∅.

� f is convex if its epigraph is a convex subset of X × R.
Equivalently, f is convex if

∀x, y ∈ X, ∀t ∈ [0, 1], f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).

9

1.1. BASIC NOTIONS RELATED TO CONSTRAINED OPTIMIZATION 10

� f is lower semicontinuous if its epigraph is a closed subset of X × R.
Equivalently, f is lower semicontinuous if

∀x ∈ X, lim inf
y→x

f(y) ≥ f(x).

Remark 1. For σ > 0, we call the function f σ-strongly convex if it satisfies

∀x, y ∈ X, ∀t ∈ [0, 1], f ((1− t)x+ ty) +
σ

2
(1− t)t∥x− y∥2 ≤ (1− t)f(x) + tf(y).

Remark 2. We will denote by Γ0(X) the set of all proper, convex and lower semicontinuous functions
defined on X.

Definition 1.1.4. Let A : X → 2X be a multivalued operator.

� The set of all fixed points of A is FixA = {x ∈ X : x ∈ Ax}.

� The set of all zeros of A is zerA = {x ∈ X : 0X ∈ Ax}.

� The set of all minimizers of f is Argminf = {x ∈ X : ∀y ∈ X, f(x) ≤ f(y)}.

Definition 1.1.5. Let f : X → R̄ be proper. The subdifferential of f is the set-valued operator
defined by

∂f : X → 2X

x 7→ {x∗ ∈ X : ∀y ∈ X, f(y) ≥ f(x) + ⟨x∗, y − x⟩} .

f is subdifferentiable at x if ∂f(x) ̸= ∅. In that case, x∗ is a subgradient of f at x.

Theorem 1.1.6. (Fermat’s rule) Let f : X → R̄ be proper. Then

Argminf = zer∂f = {x ∈ X : 0X ∈ ∂f(x)} . (1.1)

Let f : X → R̄. We introduce the notion of conjugate function of f in order to deal with the
general duality theory for convex optimization problems [8, Chapter 3].

Definition 1.1.7. The Fenchel conjugate function of f is defined by

f∗ : X → R̄
x∗ 7→ sup

x∈X
{⟨x∗, x⟩ − f(x)} .

Remark 3. It is clear that
f∗(x∗) = sup

x∈domf
{⟨x∗, x⟩ − f(x)} .

We can similarly introduce the Fenchel conjugate function of f with respect to the nonempty set
A ⊆ X by

f∗A : X → R̄
x∗ 7→ (f + δA)

∗(x) = sup
x∈A
{⟨x∗, x⟩ − f(x)} .

Proposition 1.1.8. [8, Proposition 2.3.2] Let f : X → R̄ be a proper function. Then we have the
following Young-Fenchel inequality

∀ (x, x∗) ∈ X2, f(x) + f∗(x∗) ≥ ⟨x∗, x⟩. (1.2)

1.1. BASIC NOTIONS RELATED TO CONSTRAINED OPTIMIZATION 11

Proposition 1.1.9. [8, Proposition 2.3.2] Let f : X1 × · · · × Xm → R̄ be a function defined by
f(x1, · · · , xm) =

∑m
i=1 fi(xi), where for i = 1, · · · ,m, Xi is a Hilbert space, in which case f is

separable. Then, the conjugate function of f is given by

∀(x∗1, · · · , x∗m) ∈ X1 × · · · ×Xm, f∗(x∗1, · · · , x∗m) =
m∑
i=1

f∗i (x
∗
i). (1.3)

Definition 1.1.10. The biconjugate function of f is defined by

f∗∗ : X → R̄
x 7→ sup

x∈X
{⟨x∗, x⟩ − f∗(x∗)} .

Remark 4. A direct consequence of the Young-Fenchel inequality is that

∀x ∈ X, f∗∗(x) ≤ f(x).

Theorem 1.1.11. [8, Theorem 2.3.5] If f ∈ Γ0(X) then f∗ is proper and f = f∗∗.

Remark 5. [8, Theorem 2.3.6] A stronger statement of the previous theorem is given by the equiv-
alence

f = f∗∗ ⇐⇒ f ∈ Γ(X).

Proposition 1.1.12. [8, Theorem 2.3.17] Let f : X → R̄ an extended real-valued function and
x ∈ X.

1. x∗ ∈ ∂f(x) =⇒ x ∈ ∂f∗(x∗),

2. If f = f∗∗ then x∗ ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(x∗),

3. If f ∈ Γ0(X) then x∗ ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(x∗).

Theorem 1.1.13. [5, Theorem 16.23] Let f : X → R̄ ∈ Γ0(X). Let x ∈ X and x∗ ∈ X∗. Then

x∗ ∈ ∂f(x) ⇐⇒ f(x) + f∗(x∗) = ⟨x∗, x⟩ ⇐⇒ x ∈ ∂f∗(x∗). (1.4)

Corollary 1.1.14. [5, Corollary 16.24] Let f ∈ Γ0(X). Then (∂f)−1 = ∂f∗.

We introduce next the concept of infimal convolution, which will prove useful in addressing
facility location problems in the upcoming chapter.

Definition 1.1.15. [5, Definition 12.1] Let f, g : X → R̄ be two functions. The infimal convolution
of f and g is defined by

f g : X → R̄
x 7→ inf

y∈X
{f(y) + g(x− y)} .

It is exact at a point x ∈ X if

f g(x) = min
y∈X
{f(y) + g(x− y)} .

f g is exact if it is exact at every point of its domain in which case we denote it f g.

1.1. BASIC NOTIONS RELATED TO CONSTRAINED OPTIMIZATION 12

Remark 6. More generally, considering fi : X → R̄, i = 1, · · · ,m, we define the infimal convolution

f1 · · · fm : X → R̄

x 7→ inf
xi∈X, i=1,··· ,m,∑m

i=1 xi=x

{
m∑
i=1

fi(xi)

}
.

Proposition 1.1.16. [5, Proposition 12.11] Let f, g : X → R̄ be convex functions. Then the
infimal convolution f g is convex.

Corollary 1.1.17. [5, Corollary 12.12] If C is a convex subset of X, then the distance function
dC is convex.

Definition 1.1.18. [5, Definition 12.33] Let Y be a Hilbert space and L ∈ L(X,Y) is a continuous
linear operator. The infimal postconvolution of f by L is defined by

L f : Y → R̄
y 7→ inf

x∈X,Lx=y
f(x).

It is exact at a point y ∈ Y if
L f(y) = min

x∈X,Lx=y
f(x).

L f is exact if it is exact at every point of its domain in which case we denote f g.

Proposition 1.1.19. [8, Proposition 2.3.8]

1. Let Y be a Hilbert space, L : X → Y a continuous linear operator and f : X → R̄ an extended
real-valued function. Then

(Af)∗ = f∗ ◦A∗. (1.5)

2. Let fi : X → R̄, i = 1, . . . ,m, given functions. Then

(f1 · · · fm)∗ =

m∑
i=1

f∗i . (1.6)

Proposition 1.1.20. [5, Proposition 16.32] Let Y be a Hilbert space and f ∈ Γ0(X) and g ∈ Γ0(Y)
be two functions. Let L ∈ B(X,Y) be a bounded linear operator such that L(domf) ∩ domg ̸= ∅.
Suppose that (f + g ◦ L)∗ = f∗ (L∗ g∗). Then

∂(f + g ◦ L) = ∂f + L∗ ◦ (∂g) ◦ L. (1.7)

Remark 7. In particular, letting f, g ∈ Γ0(X) such that domf ∩ domg ̸= ∅ and assuming that
(f + g)∗ = f∗ g∗, we deduce that ∂(f + g) = ∂f + ∂g.

A similar result follows using the notion of strong quasi-relative interior.

Definition 1.1.21. Let A ⊆ X be a subset of X. We define the following notions of generalized
interior.

riA = {x ∈ A : ∃ϵ > 0 : B(x, ϵ) ∩ aff(A) ⊂ A} ,
sqriA = {x ∈ A : cone(A− x) is a closed linear subspace of X}

are respectively the relative interior and the strong quasi-relative interior of the set A.

1.1. BASIC NOTIONS RELATED TO CONSTRAINED OPTIMIZATION 13

Remark 8. If X = Rn and A ⊆ Rn, then sqriA = riA.

Theorem 1.1.22. [5, Theorem 16.37] Let Y be a Hilbert space, f ∈ Γ0(X) and g ∈ Γ0(Y) be two
fonctions and L ∈ B(X,Y) be a bounded linear operator. Suppose that 0 ∈ sqri(domg − L(domf)).
Then ∂(f + g ◦ L) = ∂f + L∗ ◦ (∂g) ◦ L.

Remark 9. [5, Remark 16.39] In particular, let f, g ∈ Γ0(X). Suppose that 0 ∈ sqri(domg− domf).
Then ∂(f + g) = ∂f + ∂g.

Definition 1.1.23. [5, Definition 12.20] Let f : X → R̄ be a proper, convex and lower semicontin-
uous function and let γ > 0. The Moreau envelope of f of parameter γ is defined by

γf : X → R̄

x→
(
f□

1

2γ
∥.∥2

)
(x).

(1.8)

Definition 1.1.24. Let f ∈ Γ0(X) and let γ > 0. The proximal (or proximity) operator of f of
parameter γ is defined by

proxγf : X → X

x 7→ argminy∈X

{
f(y) +

1

2γ
∥x− y∥2

}
.

(1.9)

Remark 10. [5, Remark 12.24] For f ∈ Γ0(X) and γ > 0, it yields that

γf(x) = f(proxγf (x)) +
1

2γ
∥x− proxγf (x)∥2.

Example 1.1.25. [5, Example 12.25] Let C be a nonempty closed and convex subset of X. Then

proxiC = PC . (1.10)

Proposition 1.1.26. [5, Proposition 16.34] Let f ∈ Γ0(X) and (x, p) ∈ X2. Then

p = proxf (x) ⇐⇒ x− p ∈ ∂f(p), (1.11)

or equivalently,
proxf = (Id + ∂f)−1.

Definition 1.1.27. Let A : X → 2X be a multivalued operator and let γ > 0. The resolvant of
the operator A and its Yoshida approximation of index γ are respectively given by

JA = (Id +A)−1 and γA = γ−1(Id− JγA).

Remark 11. [5, Example 23.3] Let f ∈ Γ0(X) and let γ > 0. Then

Jγ∂f = proxγf and γ(∂f) = ∇(γf).

Proposition 1.1.28. Let f : X1 × · · · × Xm → R̄ be a function defined by f(x1, · · · , xm) =∑m
i=1 fi(xi) where, for i = 1, · · · ,m, Xi is a Hilbert space and fi : Xi → R̄ is a proper, convex and

lower semicontinuous function. Then

∀x = (x1, · · · , xm) ∈ X1 × · · · ×Xm, proxf (x) =
(
proxf1(x1), · · · ,proxfm(xm)

)
. (1.12)

1.2. DUALITY 14

Proposition 1.1.29. [5, Proposition 12.26] Let f ∈ Γ0(X) and let (x, p) ∈ X2. Then

p = proxf (x) ⇐⇒ ∀y ∈ H, ⟨y − p, x− p⟩+ f(p) ≤ f(y).

Proposition 1.1.30. [5, Proposition 14.3] Let f ∈ Γ0(X) and γ > 0. Then, the extended Moreau
decomposition formula is given by

Id = proxγf + γproxγ−1f∗ ◦ γ−1Id. (1.13)

Moreover, one has

∀x ∈ X, f(proxγf (x)) + f∗(proxγ−1f∗(γ−1x)) =
〈
proxγf (x),proxγ−1f∗(γ−1x)

〉
. (1.14)

Proposition 1.1.31. [5, Proposition 12.28] Let f ∈ Γ0(X). Then

Fixproxf = Argminf. (1.15)

Proposition 1.1.32. [5, Proposition 12.29] Let f ∈ Γ0(X) and let γ > 0. Then γf : X → R is
Fréchet differentiable on X and its gradient

∇(γf) = γ−1(Id− proxγf) (1.16)

is γ−1-Lipschitz continuous.

Corollary 1.1.33. [5, Corollary 12.30] Let C be a nonempty closed and convex subset of X. Then
d2C is Fréchet differentiable on X and

∇(γf) = 2(Id− PC). (1.17)

1.2 Duality

Let Y be a Hilbert space and suppose that f : X → R̄ and g : Y → R̄ are proper functions. Let
A ∈ L(X,Y) be a continuous linear operator such that

domf ∩A−1(domg) ̸= ∅.

Let us consider the following optimization problem

inf
x∈X
{f(x) + g(Ax)} . (PA)

Then, by virtue of perturbation theory [8, Section 3.1], a dual formulation of (PA) is given by

sup
y∗∈Y

{−f∗(−A∗y∗)− g∗(y∗)} . (DA)

Example 1.2.1. 1. If X = Y and A = Id, the primal problem writes

inf
x∈X
{f(x) + g(x)} (P Id)

and its dual formulation is given by

sup
y∗∈X

{−f∗(−y∗)− g∗(y∗)} . (DId)

1.2. DUALITY 15

2. If f = 0, the primal problem writes
inf
x∈X
{g(x)} (PAg)

and duality yields
sup
y∗∈X,
A∗y∗=0

{−g∗(y∗)} . (DAg)

3. If g(x) =
∑m

i=1 fi(xi) and Ax = (x, · · · , x), the primal problem writes

inf
x∈X

{
m∑
i=1

fi(xi)

}
(PΣ)

and its dual counterpart is given by

sup
xi∗∈X,i=1,··· ,m,∑m

i=1 xi∗=0

{
−

m∑
i=1

f∗i (xi∗)

}
. (DΣ)

We recall that a subset K ⊆ X is a cone if it satisfies ∀x ∈ K,∀α > 0, αx ∈ K and a convex
cone if ∀x, y ∈ K,∀α, β > 0, αx+ βy ∈ K.

Definition 1.2.2. Let K ⊆ X be a convex cone.
K induces on X a partial ordering relation ⪯K if for x, y ∈ X it holds x ⪯K y ⇔ y − x ∈ K.
In this case, we denote ⪯K := {(x, y) ∈ X ×X : y − x ∈ K}.

We denote X̄ = X ∪ {+∞K} where +∞K is the largest element attached to X with respect to
⪯K . Then it holds x ⪯K +∞K for all x ∈ X.

Remark 12. We write x ≺K y when x ⪯K y and x ̸= y.
In particular when X = R and K = R+, we have ≤:=⪯R+ and <:=≺R+ .
We use the convention 0.(+∞) := +∞ and 0.(−∞) := 0. Similarly, on X̄, we will employ the
following convention

0.(+∞K) := +∞K and 0.(−∞K) := 0

We refer to [5] and [8] for all operations and conventions in that regard.

Definition 1.2.3. The dual cone of K is defined as

K∗ := {x∗ ∈ X : ⟨x∗, x⟩ ≥ 0, ∀x ∈ K}

By convention, we set for all x∗ ∈ K∗, ⟨x∗,+∞K⟩ := +∞ .

Definition 1.2.4. Let A be a subset of X. The normal cone of A at x ∈ X is given as

NA(x) :=

{
{x∗ ∈ X : ⟨x∗, y − x⟩ ≤ 0, ∀y ∈ A} if x ∈ A,
NA(x) = ∅, otherwise.

Altough our focus will be on scalar optimization, it is necessary to extend the classical concepts
of convexity and closedness from scalar functions to vector functions, as the objective function’s
composition may involve vector-valued components.

1.2. DUALITY 16

Definition 1.2.5. Let W ⊆ X be a nonempty set. A function f : X → R is K-increasing on W if

∀x, y ∈W, x ⪯K y =⇒ f(x) ≤ f(y).

When W = X, the function f is simply K-increasing.

Definition 1.2.6. Let Z a Hilbert space. Assume that Z is partially ordered by the convex cone
Q ⊆ Z. Set Z̄ := Z ∪ {±∞Q} and consider a vector function F : X → Z̄ .

� The domain of F is defined as dom F := {x ∈ X : F (x) ̸= +∞Q}.

� F is proper if dom F ̸= ∅.

� F is Q-convex if

∀x, y ∈ X, ∀λ ∈ [0, 1], F ((1− λ)x+ λy) ⪯Q (1− λ)F (x) + λF (y).

� The Q-epigraph of F is defined as

epiQF = {(x, z) ∈ X × Z : F (x) ⪯Q z} .

� Assume Q is closed. F is Q-epi-closed if epiQF is a closed set.

� For z∗ ∈ Q∗, the function (z∗F) : X → R is defined by (z∗F)(x) := ⟨z∗, F (x)⟩.
In particular, dom(z∗F) = domF .

� F is called positively Q-lower semicontinuous at x ∈ X if (z∗F) is lower semicontinuous at x
for all z∗ ∈ Q∗.
F is called positively Q-lower semicontinuous if it is positively Q-lower semicontinuous at
every x ∈ X.

� F is (K,Q)-increasing on W if

∀x, y ∈W,x ⪯K y =⇒ F (x) ⪯Q F (y).

When W = X, the function F is simply (K,Q)-increasing.

Remark 13. When Z = R and Q = R+, the notion of Q-epi-closedness corresponds to that of lower
semicontinuity.
If F is positively Q-lower semicontinuous, then it is also Q-epi-closed, while the inverse statement
is not generally true.
If F is Q-convex, then (z∗F) is convex for all z∗ ∈ Q∗.
By the aforementioned convention, we have

∀f : X → R, 0.f = δdomf and ∀F : X → Z, 0Z .F = δdomF . (1.18)

To conclude this preliminary chapter, let us introduce our general optimization problem with
geometric and cone constraint. We make the following assumptions.

� S ⊆ X is a given nonempty set.

� Z is a Hilbert space partially ordered by the convex cone C ⊆ Z.

1.2. DUALITY 17

� f : X → R̄ is a proper function.

� g : X → Z̄ = Z ∪ {±∞C} is a proper vector function such that

domf ∩ S ∩ g−1(−C) ̸= ∅.

We set A = {x ∈ S : g(x) ∈ −C} and consider the following constrained optimization problem

inf
x∈A

f(x). (PA)

Using perturbation theory and depending on the perturbation function considered (and thus on
the duality chosen) we obtain the following dual formulations.

1. By Lagrange duality, the Lagrange dual of (PA) writes

sup
z∗∈Z

{− (f + (z∗g))∗S (0)− δ−C∗(z∗)} . (DL)

2. By Fenchel duality, the Fenchel dual of (PA) is given

sup
y∗∈X

{−f∗(y∗)− σA(x∗ − y∗)} . (DF)

3. By Fenchel-Lagrange duality, the Fenchel-Lagrange dual of (PA) formulates

sup
y∗∈X,z∗∈Z

{−f∗(y∗)− (z∗g)∗S(−y∗)− δ−C∗(z∗)} . (DFL)

These formulations demonstrate that a convex optimization problem can be paired, through Fenchel-
Rockafellar duality, to a dual problem involving the conjugates of the functions present in the primal
formulation. The derivation of these formulations will not be detailed here, for a comprehensive
explanation we refer to [8, Section 3.1].

Chapter 2

Facility location optimization

A facility location problem is the classical optimization problem for determining the sites for given
public facilities such as factories and warehouses based on geographical demands, facility costs, and
transportation distances. It consists of choosing the best among potential sites to minimize costs
or maximize service to customers or demand points.
The minsum and minimax location problems are two different types of facility location problems
that focus on optimizing different objective functions to determine the best locations for facilities.
The first problem aims to minimize the total (or average) distance between demand points and
their assigned facility (or the nearest facility if multiple are implemented). This minsum problem
is particularly relevant when the goal is to minimize the overall transportation cost (or time).
Practically, it consits of determining (the coordinates of) a new point such that the sum of all
distances between this point and the given points is minimal.
The second problem focuses on minimizing the maximum distance between any demand point and
its assigned facility (or the nearest facility if multiple are implemented). This minimax problem is
relevant when the goal is to ensure that the worst-case service level (longest distance) is as good as
possible, which is important for emergency services (and other critical applications). Practically,
it involves finding (the coordinates of) a new point such that the maximum of the aforementioned
distances is minimized.
The latter problem tends to be more complex because it involves minimizing the worst-case scenario,
which is inherently more difficult. Furthermore, compared to minsum problems, solving minimax
problems often requires more computational effort and advanced optimization techniques. Namely,
these formulations can become computationally very demanding as the problem’s dimensionality
increases.
During our internship, we focused on the study of minimax location problems on Hilbert spaces
with geometric constraints. Let X be a Hilbert space.

2.1 Basic concepts related to location problems

In facility location problems, the distances considered depend on the context and the objective
function. Typically, these distances can be Euclidean distances, gauges or minimal time distances.
The gauge distance refers to the straight-line distance between two points in a geometric space,
whereas the minimal time distance denotes the shortest travel time between these points.
While gauge distances are often used for theoretical or simplified models, minimal time distances
are used for more realistic and application-driven models.

18

2.1. BASIC CONCEPTS RELATED TO LOCATION PROBLEMS 19

Definition 2.1.1. Let A be a subset of X. The gauge function γA : X → R̄ is defined by

γA(x) := inf {t > 0 : x ∈ tA} .

Definition 2.1.2. Let C be a nonempty closed and convex subset of X and Ω ⊆ X be a nonempty
set. The minimal time function associated with the sets C and Ω is defined by

T C
Ω (x) := inf {t ≥ 0 : x+ tC ∩ Ω ̸= ∅} .

Remark 14. T C
Ω (x) stands for the minimal time needed to the point x to reach the target set Ω

along the constant dynamics C.

� If C = B̄ (0X , 1) is the closed unit ball, then for all x ∈ X, T C
Ω (x) = d (x,Ω) := infy∈Ω∥x−y∥.

� If C = {0X}, then for all x ∈ X, T C
Ω (x) = δΩ(x).

� If Ω = {0X} then for all x ∈ X, T C
Ω (x) = γ(−x).

We present the following notion which was introduced in [11] and that generalizes the classical
minimal time.

Definition 2.1.3. Let C ⊆ X and Ω ⊂ X be nonempty sets and f : X → R̄ a proper function.
The extended perturbed minimal time function T C

Ω,f : X → R̄ is defined, for all x ∈ X, as the
infimal convolution of γC , f and δΩ by

T C
Ω,f (x) := inf

y∈X,z∈X
{γC(x− y − z) + f(y) + δΩ(z)}

or equivalently
T C
Ω,f (x) = inf

y∈X,z∈Ω
{γC(x− y − z) + f(y)} . (2.1)

Remark 15. If f = δ0X and C is closed and convex then T C
Ω,f reduces to T C

Ω , hence the notion of
generalized minimal time function.

In order to simplify the forthcoming notations, we introduce the notion of polar set as provided
in [11, Remark 2.1].

Definition 2.1.4. Let C be a nonempty subset of X.

� The polar set of C is defined as

C0 := {x∗ ∈ X : σC(x
∗) ≤ 1} ,

where σC is the support function of C defined in Definition 1.1.1.

� The dual gauge γC0 : X → R̄ of the set C is defined for all x∗ ∈ X, by

γC0(x∗) := sup
x∈C
⟨x∗, x⟩ = σC(x

∗).

Remark 16. [11, Remark 2.1] proves that γ∗C = δC0 which yields in particular that domγ∗C =
domδC0 = C0.

Remark 17. The optimization problems where the objective function involves the extended minimal
time function are convex optimization problems. This property justified by Theorem 3.6.1 enables
us to refer to the relevant theory dedicated to the convex setting.

2.2. POSITION OF THE PROBLEM 20

Remark 18. We provide two geometric interpretations related to our facility location model, fo-
cusing on two specific cases. These instances will be the focus along our upcoming numerical
experiments.

1. Assume that in expression (2.1) f = γG where G is a closed and convex set such that
0X ∈ C ∩G, then the generalized minimal time function rewrites

T −C
Ω,γG

(x) = inf
y∈X,z∈Ω

{γ−C(x− y − z) + γG(y)}

= inf
α,β>0,y∈X,z∈Ω,

x−y−z∈−αC,y∈βG

{α+ β}

= inf
α,β>0,k∈X,z∈Ω,

x−k∈−αC,k−z∈βG

{α+ β}

T −C
Ω,γG

(x) = inf
α,β>0,(x+αC)∩(Ω+βG) ̸=∅

{α+ β} , (2.2)

where (2.2) interprets α as the minimal time needed for the given point x to reach the set
Ω along the constant dynamics C, while Ω is moving in direction of x with respect to the
constant dynamics characterized by the set G. β gives the minimal time needed for Ω to
reach x.

2. Assume that f = δL where L is a nonempty closed and convex set, then the generalized
minimal time function rewrites

T −C
Ω,δL

(x) = inf
y∈X,z∈Ω

{γ−C(x− y − z) + δL(y)}

= inf
y∈L,z∈Ω

{γ−C(x− y − z)}

= inf
λ>0,y∈L,z∈Ω,
x−y−z∈−λC

λ

T −C
Ω,δL

(x) = inf
λ>0,(x+λC)∩(Ω+L) ̸=∅

λ, (2.3)

where (2.3) interprets λ as the minimal time needed for the given point x to reach the set
Ω + L along the constant dynamics C.

We can now present the framework of the general minimax location problem studied.

2.2 Position of the problem

Before stating our minimax location problem which involves a generalized minimal time function,
we begin by making the following assumptions.

� S ⊆ X is nonempty closed and convex.

� Ci ⊆ X is closed and convex with 0X ∈ intCi, i = 1, · · · , n.

� Ωi ⊆ X is nonempty convex and compact, i = 1, · · · , n.

� fi : X → R̄ is proper, convex and lower semicontinuous, i = 1, · · · , n.

2.3. DUALITY RESULTS 21

� hi : R → R̄ defined by hi(x) :=

{
x, if x ∈ R+,

+∞, otherwise
is proper, convex, lower semicontinuous

and increasing on R+, i = 1, · · · , n.

� ai ∈ R+ are nonnegative set-up costs, i = 1, · · · , n.

Consider the following generalized location problem

inf
x∈S

max
1≤i≤n

{
hi

(
T Ci
Ωi,fi

(x)
)
+ ai

}
. (PS

h,T)

Remark 19. By the above assumptions, it yields that

0X∗ ∈ C0
i ∩ domf∗i ∩ domσΩi , i = 1, · · · , n.

Moreover, since γ∗Ci
= δC0

i
and σΩi are continuous functions, we get by Theorem 3.6.1 that for

every i = 1, · · · , n, T Ci
Ωi,fi

is a proper, convex and lower semicontinuous function with full domain
and thus continuous.
In addition, since hi is a proper, convex, lower semicontinuous and increasing function on R+, we
deduce that the objective function of (PS

h,T) is proper, convex and lower semicontinuous which

ensures that (PS
h,T) is indeed a convex optimization problem.

We will study (PS
h,T) using conjugate duality which was notably introduced in this context in

[13].

2.3 Duality results

In order to adress (PS
h,T) by means of conjugate duality duality, we reformulate it as a multi-

composed optimization problem for which a suitable approach is available [10],[13],[15]. Consider
the equivalent formulation of problem (PS

h,T) given by

inf
x∈S

(f ◦ F ◦G) (x), (P ′S
h,T)

where we define the functions

� f : Rn → R, f(z) :=

{
max1≤i≤n {hi(zi) + ai} if z = (z1, · · · , zn)T ∈ Rn

+, i = 1, · · · , n,
+∞ otherwise,

� F : Xn → Rn, F (y) :=
(
T C1
Ω1,f1

(y1), · · · , T Cn
Ωn,fn

(yn)
)T

, y = (y1, · · · , yn)T ,

� G : X → Xn, G(x) := (x, · · · , x).

Based on [15, Section 3] where the authors formulated a conjugate dual problem to an optimization
problem with geometric and cone constraints whose objective function is a composition of n + 1
functions, we take here n = 2, which leads to the following observations.

� X0 := Rn partially ordered by the convex cone K0 = Rn
+.

� X1 := Xn partially ordered by the nonempty convex cone K1 = 0Xn .

� X2 := X,S ⊆ X2.

2.3. DUALITY RESULTS 22

� f is proper, convex and K0-increasing on F (domF) +K0 ⊆ dom f .

� F : X1 → X0 = X0 ∪ {+∞K0} is proper and K1-K0-increasing on G(dom G ∩ S) + K1 ⊆
dom F .

� G : X2 → X1 = X1 ∪ {+∞K1} is a proper and K1-convex function.

We use the convention f(+∞K0) = +∞ and F (+∞K1) = +∞K1 , so that f : X̄0 → R̄ and
F : X̄1 → X̄0 are now considered. Employing the same duality concept as in [15], we get the
following conjugate dual

sup
z∗i ∈R+,w∗

i ∈X,
i=1,··· ,n

{
inf
x∈S

{
n∑

i=1

⟨w∗
i , x⟩

}
− f∗(z∗)− (z∗F)∗(w∗)

}
,

where x ∈ S is the primal variable and z∗ ∈ Rn
+ and w∗ ∈ Xn are the dual variables.

In [13], the authors proved that

f∗(z∗) = min∑n
i=1 λi≤1,λi≥0,
i=1,··· ,n

{
n∑

i=1

[(λihi)
∗ (z∗i)− λiai]

}
,

and

(z∗F)∗(w∗) =
n∑

i=1

(
z∗i T

Ci
Ωi,fi

)∗
(w∗

i),

so that the conjugate dual problem to (PS
h,T) is given by

sup∑n
i=1 λi≤1,λi≥0,
z∗i ∈R+,w∗

i ∈X,
i=1,··· ,n

{
−σS

(
n∑

i=1

w∗
i , x

)
−

n∑
i=1

[(λihi)
∗ (z∗i)− λiai]−

n∑
i=1

(
z∗i T

Ci
Ωi,fi

)∗
(w∗

i)

}
, (DS

h,T)

where λ ∈ Rn
+ is an additionnal dual variable.

Remark 20. If the set-up costs ai, i = 1, · · · , n, are arbitrary, then the conjugate of f is given by

f∗(z∗) = min∑n
i=1 λi=1,λi≥0,
i=1,··· ,n

{
n∑

i=1

[(λihi)
∗ (z∗i)− λiai]

}
,

and the dual problem (DS
h,T) writes

sup∑n
i=1 λi=1,λi≥0,
z∗i ∈R+,w∗

i ∈X,
i=1,··· ,n

{
−σS

(
n∑

i=1

w∗
i , x

)
−

n∑
i=1

[(λihi)
∗ (z∗i)− λiai]−

n∑
i=1

(
z∗i T

Ci
Ωi,fi

)∗
(w∗

i)

}
.

For simplicity, we will continue focusing on the case where non-negative setup costs are considered.

2.3. DUALITY RESULTS 23

After some computations -which are not detailed here- and introducing, like in [11], the sets
defined by I = {i ∈ {1, · · · , n} : z∗i > 0} and R = {r ∈ {1, · · · , n} : λr > 0}, we rewrite the dual
problem (DS

h,T) as

sup
λi,z

∗
i ≥0,i=1,··· ,n,

I⫅R
w∗

i ∈X,γ
C0
i
(w∗

i)≤z∗i ,i∈I,∑
r∈R λr≤1

{
−σS

(
−
∑
i∈I

w∗
i

)
−
∑
r∈R

λr

[
h∗r

(
z∗r
λr

)
− ar

]
−
∑
i∈I

[
z∗i f

∗
i

(
1

z∗i
w∗
i

)
+ σΩi(w

∗
i)

]}
,

which can be equivalently written thanks to [11, Proposition 3.2] as

sup
λi,z

∗
i ≥0,

w∗
i ∈X,γ

C0
i
(w∗

i)≤z∗i ,∑n
i λi≤1,i=1,··· ,n

{
−σS

(
−

n∑
i

w∗
i

)
−

n∑
i=1

[(λihi)
∗ (z∗i)− λiai + (z∗i fi)

∗(w∗
i) + σΩi(w

∗
i)]

}
. (D̂S

h,T)

Remark 21. In our numerical experiments, we will manipulate dual formulation (D̂S
h,T) as handling

with the set I and R introduces the inconvenience of transforming dual problem (DS
h,T) into a

discrete optimization problem, making it more challenging to solve.

The weak duality between the primal-dual pair (PS
h,T)-(D

S
h,T) always holds, v(P

S
h,T)≥ v(DS

h,T).
For details regarding this assertion, we refer to [15, Theorem 3.1 and Theorem 3.2] and [8, Theorem
3.1.1]. The proof involves formulating an equivalent primal problem and computing its dual, which
will be equivalent to (DS

h,T). We then utilize the Young-Fenchel inequality (1.2) to establish the
desired result.
Our aim is now to verify whether strong duality holds.

Theorem 2.3.1 (Strong duality). Under the assumptions of section 2.2, strong duality holds be-
tween the primal problem (PS

h,T) and its dual (DS
h,T), v(P

S
h,T)= v(DS

h,T), and the dual problem has

an optimal solution (λ̄, z̄∗, w̄∗) ∈ Rn
+ × Rn

+ ×X |Ī|, with the corresponding sets Ī ⊆ R̄ ⊆ {1, · · · , n}.

Proof. It suffices to show that regularity conditions [15, (RCC
2), page 12] are satisfied in which case

[15, Theorem 4.1] applies. Indeed, we make the following observations.

� X0, X1, X2 and Z := X2 which is ordered by the trivial cone Q := X2 = X are Hilbert spaces,
f is lower semicontinuous, S is closed.

� Letting g : X2 → Z̄ : Z ∪ {+∞Q} such that g(x) := x, g is X-epi-closed.

� K0 = Rn
+ is closed with intK0 ̸= ∅, and F is K0-epi-closed.

� K1 = 0Xn is closed and G is K1-epi-closed. Although intK1 = ∅, the continuity of G voids
the necessity of this condition.

Furthermore, as

sqri(F (domF)− dom f +K0) = sqri(F (domF)− Rn
+ + Rn

+) = Rn,

sqri(G(domG ∩ dom g ∩ S)− domF +K1) = sqri(G(X ∩X ∩ S)−Xn + 0Xn) = Xn,

sqri(g(domG ∩ dom g ∩ S) +Q) = sqri(g(X ∩X ∩ S) +X) = X,

2.4. SPECIAL CASES 24

we have the following requirements fulfilled

0Rn ∈ sqri(F (domF)− dom f +K0),

0Xn ∈ sqri(G(domG ∩ dom g ∩ S)− domF +K1),

0X ∈ sqri(g(domG ∩ dom g ∩ S) +Q).

By virtue of the above mentioned result, we deduce strong duality. In particular, the dual
problem (DS

h,T) has a solution and the equality v(PS
h,T)= v(DS

h,T) holds.

The following result -which is a consequence of Theorem 2.3.1- states the necessary and sufficient
optimality conditions in the context of our minimax location problem. We refer to [11] for the proof
which relies on standard arguments.

Theorem 2.3.2 (Optimality conditions). 1. Suppose that the assumptions of section 2.2 are
fulfilled and let x̄ ∈ S be an optimal solution to the problem (PS

h,T). Then there exists an

optimal solution (λ̄, z̄∗, w̄∗) ∈ Rn
+×Rn

+×X |Ī|to the dual problem (DS
h,T) with the corresponding

sets Ī ⊆ R̄ ⊆ {1, · · · , n} such that

max
1≤j≤n

{
hj

(
T Cj

Ωj ,fj
(x̄)
)
+ aj

}
=
∑
i∈Ī

z̄∗i T
Ci
Ωi,fi

(x̄)−
∑
r∈R̄

λ̄r

[
h∗r

(
z̄∗r
λ̄r

)
− ar

]
=
∑
r∈R̄

λ̄r

[
hr

(
T Cr
Ωr,fr

(x̄)
)
+ ar

]
,

(i)

λ̄rh
∗
r

(
z̄∗r
λ̄r

)
+ λ̄rhr

(
T Cr
Ωr,fr

(x̄)
)
= z̄∗rT

Cr
Ωr,fr

(x̄), ∀r ∈ R̄, (ii)

z̄∗i T
Ci
Ωi,fi

(x̄) + z̄∗i f
∗
i

(
1

z̄∗i
w̄∗
i

)
+ σΩi(w̄

∗
i) = ⟨w̄∗

i , x̄⟩, ∀i ∈ Ī , (iii)

∑
i∈Ī

⟨w̄∗
i , x̄⟩ = −σS

−∑
i∈Ī

w̄∗
i

 , (iv)

max
1≤j≤n

{
hj

(
T Cj

Ωj ,fj
(x̄)
)
+ aj

}
= hr

(
T Cr
Ωr,fr

(x̄)
)
+ ar, ∀r ∈ R̄, (v)∑

r∈R̄

λ̄r = 1, λ̄k > 0, k ∈ R̄, λ̄l = 0, l /∈ R̄, z̄∗i > 0, i ∈ Ī , z̄∗j = 0, j /∈ Ī , (vi)

γC0
i
(w̄∗

i) = z̄∗i , w̄
∗
i ∈ X \ {0X}, i ∈ Ī . (vii)

2. Conversely, if there exists x̄ ∈ S such that for some (λ̄, z̄∗, w̄∗) ∈ Rn
+ × Rn

+ × (X)|Ī| with the
corresponding index sets I ⊆ R ⊆ {1, . . . , n} the conditions (i)-(vii) are fulfilled, then x̄ is an
optimal solution to (PS

h,T), (λ̄, z̄
∗, w̄∗) ∈ Rn

+ × Rn
+ × (X)|Ī| is an optimal solution to (DS

h,T)

and v(PS
h,T)= v(DS

h,T).

2.4 Special cases

In this section, we will focus on two specific instances of our general minimax location problem.
We recall that in such problem, the objective function involves the so-called extended minimal time
function is T Ci

Ωi,fi
, where, for i = 1, · · · , n, Ci is closed and convex with 0X ∈ intCi, Ωi is nonempty

convex and compact and fi is a proper, convex and lower semicontinuous extended real-valued

2.4. SPECIAL CASES 25

function.
Before introducing our methods, algorithms, and subsequent numerical experiments, we will first
formulate the optimization problem and outline the optimality conditions for these two particular
cases.

2.4.1 Special case one

Take, in the primal formulation (PS
h,T), S = X,hi = . + δR+ , ai = 0 and fi = γGi , where Gi is a

closed and convex set such that 0X ∈ Ci ∩Gi. Using Remark 16, it yields f∗i = δG0
i
.

The primal problem (PS
h,T) becomes in this specific case

inf
x∈S

max
1≤i≤n

{
T Ci
Ωi,γGi

(x)
}
, (PγG,T)

while its dual formulation rewrites

sup
z∗i ≥0,i=1,··· ,n,

I={i∈{1,··· ,n}:z∗i >0}
w∗

i ∈X,γ
C0
i
(w∗

i)≤z∗i ,i∈I,
γ
G0
i
(w∗

i)≤z∗i ,i∈I,∑
i∈I z

∗
i ≤1,

∑
i∈I w

∗
i =0X

{
−
∑
i∈I

σΩi(w
∗
i)

}
. (DγG,T)

The following result reformulates the optimality conditions (i)-(vii) in the context of Special
case one 2.4.1.

Theorem 2.4.1. 1. Suppose that the assumptions of section 2.2 are fulfilled and let x̄ ∈ S be
an optimal solution to the problem (PγG,T). Then there exists an optimal solution (z̄∗, w̄∗) ∈
Rn
+ × Rn

+ ×X |Ī|to the dual problem (DγG,T) with the corresponding sets Ī ⊆ {1, · · · , n} such
that

max
1≤j≤n

{
T Cj

Ωj ,γGj
(x̄)
}
=
∑
i∈Ī

z̄∗i T
Ci
Ωi,γGi

(x̄), (i)

z̄∗i T
Ci
Ωi,γGi

(x̄) + σΩi(w̄
∗
i) = ⟨w̄∗

i , x̄⟩, ∀i ∈ Ī , (ii)∑
i∈Ī

w̄∗
i = 0X , (iii)

max
1≤j≤n

{
T Cj

Ωj ,γGj
(x̄)
}
= T Cr

Ωi,γGi
(x̄), ∀i ∈ Ī , (iv)∑

i∈Ī

z̄∗i = 1, z̄∗i > 0, i ∈ Ī , z̄∗j = 0, j /∈ Ī , (v)

γC0
i
(w̄∗

i) = z̄∗i , w̄
∗
i ∈ X \ {0X}, γG0

i
(w̄∗

i) ≤ γC0
i
(w̄∗

i), i ∈ Ī . (vi)

2. Conversely there exists x̄ ∈ S such that for some (z̄∗, w̄∗) ∈ Rn
+×X |Ī| with the corresponding

index sets I ⊆ R ⊆ {1, . . . , n} the conditions (i)-(vi) are fulfilled, then x̄ is an optimal solution
to (PγG,T), (z̄

∗, w̄∗) ∈ Rn
+×X |Ī| is an optimal solution to (DγG,T) and v(DγG,T)= v(DγG,T).

2.5. ALGORITHMS 26

2.4.2 Special case two

We set on this instance S = X,hi = . + δR+ , ai = 0 and fi = δLi , where Li is a nonempty closed
and convex set. It is clear that f∗i = σLi .

The primal problem (PS
h,T) rewrites

inf
x∈S

max
1≤i≤n

{
T Ci
Ωi,δLi

(x)
}

(PT)

while its dual counterpart (DS
h,T) is given by

sup
z∗i ≥0,i=1,··· ,n,

I={i∈{1,··· ,n}:z∗i >0}
w∗

i ∈X,γ
C0
i
(w∗

i)≤z∗i ,i∈I,∑
i∈I z

∗
i ≤1,

∑
i∈I w

∗
i =0X

{
−
∑
i∈I

[σLi(w
∗
i) + σΩi(w

∗
i)]

}
. (DT)

The following result, which is analogous to Theorem 2.4.1, states the optimality conditions in this
second case.

Theorem 2.4.2. 1. Suppose that the assumptions of section 2.2 are fulfilled and let x̄ ∈ S be
an optimal solution to the problem (PT). Then there exists an optimal solution w̄∗ ∈ Xn to
the dual problem (DT) with the corresponding sets Ī ⊆ {1, · · · , n} such that

max
1≤j≤n

{
T Cj

Ωj ,δLj
(x̄)
}
=
∑
i∈Ī

γC0
i
(w∗

i)T
Ci
Ωi,δLi

(x̄), (i)

γC0
i
(w∗

i)T
Ci
Ωi,+δLi

(w∗
i) + σΩi(w̄

∗
i) = ⟨w̄∗

i , x̄⟩, ∀i ∈ Ī , (ii)∑
i∈Ī

w̄∗
i = 0X , (iii)

max
1≤j≤n

{
T Cj

Ωj ,δLj
(x̄)
}
= T Ci

Ωi,δLi
(x̄), ∀i ∈ Ī , (iv)∑

i∈Ī

γC0
i
(w∗

i) = 1, (v)

w̄∗
i ∈ X \ {0X}, i ∈ Ī , w̄∗

i = 0X , i /∈ Ī . (vi)

2. Conversely there exists x̄ ∈ S such that for some (w̄∗) ∈ Xn with the corresponding index
sets I ⊆ {1, . . . , n} the conditions (i)-(vi) are fulfilled, then x̄ is an optimal solution to (PT),
(w̄∗) ∈ Xn is an optimal solution to (DT) and v(PT)= v(DT).

Our intention in illustrating the same two cases as given in [11] is to compare the efficiency of
their proposed method against two other algorithms.

2.5 Algorithms

In this section, we apply two existing algorithms in the context of our location problem, the
Chambolle-Pock and the mirror descent algorithms. To compare our results with those obtained
using the parallel splitting introduced in our location context in [11], we will consider the two
instances provided in section 2.4.

2.5. ALGORITHMS 27

We begin our proceedings with a brief overview of the method employed in [11]. The authors im-
plemented a parallel version of the Douglas-Rachford splitting algorithm. This method is designed
to decompose the (complex) optimization problem into simpler subproblems that can be solved
independently and in parallel, improving computational efficiency. For more details about these
splitting algorithms, we refer to the existing literature.
To do so, they expressed both the primal PS

h,T and dual DS
h,T problems as unconstrained optimiza-

tion problems while setting X = Rd.

1. Regarding Special case one 2.4.1, the primal (PγG,T) and dual (DγG,T) problems rewrite
respectively

min
t>0,x∈Rd,z∈(Rd)n,
α∈(R+)n,β∈(R+)n

{
t+

n∑
i=1

δepiγCi
(x− pi − zi, αi) +

n∑
i=1

δepiγGi
(zi, βi) + δH(α, β, t)

}
, (PγG,T)

where H =
{
(α, β, t)T : αi + βi = t, i = 1, · · · , n

}
and

− min
w∗∈(Rd)n,
z∗∈(R+)n

{
n∑

i=1

pTi w
∗
i +

n∑
i=1

δepiγ
C0
i

(w∗
i , z

∗
i) +

n∑
i=1

δepiγ
G0
i

(w∗
i , z

∗
i) + δD(z

∗) + δE(w
∗)

}
,

(DγG,T)

where D = {z∗ ∈ (R+)
n :
∑n

i=1 z
∗
i ≤ 1} and E =

{
w∗ ∈ (Rd)n :

∑n
i=1w

∗
i = 0Rd

}
.

2. Regarding Special case two 2.4.2, the primal (PT) and dual (DT) problems become

min
t>0,x∈Rd,

y∈(Rd)n,z∈(Rd)n

{
t+

n∑
i=1

δepiγCi
(x− yi − zi, t) +

n∑
i=1

δΩi(yi) +
n∑

i=1

δLi(zi)

}
, (PT)

and

− min
w∗∈(Rd)n,

{
n∑

i=1

σΩi(w
∗
i) +

n∑
i=1

σLi(w
∗
i) + δF (w

∗) + δE(w
∗)

}
, (DT)

where E =
{
w∗ ∈ (Rd)n :

∑n
i=1w

∗
i = 0Rd

}
and F =

{
w∗ ∈ (R+)

n :
∑n

i=1 γC0
i
(w∗

i) ≤ 1
}
.

The parallel splitting proximal point method used to solve the minimax location problem relies
heavily on the proximal operator (1.9) and is based on Theorem 3.6.2.

We can now present and detail our investigations. We choose to adapt two existings numerical
methods in the context of our location problem. The first one is the Chambolle-Pock algorithm
which was introduced by Antonin Chambolle and Thomas Pock [9] and the second one is the mirror
descent that was originally proposed by Nemirovsky and Yudin in 1983.

2.5.1 Chambolle-Pock algorithm

The Chambolle-Pock algorithm is a primal-dual method designed for solving optimization problems
where the objective function can be decomposed into a sum of two convex functions, one of which
involves a linear operator.
We shall first remind briefly the context of application of the Chambolle-Pock algorithm.
Let X and Y be two Hilbert spaces and K : X → Y a continuous linear operator. Let F : Y → R̄
and G : X → R̄ be two convex (not necessarily continuous or differentiable) functions such that

2.5. ALGORITHMS 28

their respective proximity operators are inexpensive.
Consider the problem

min
x∈X

F (Kx) +G(x) (P)

which we will refer to as the primal formulation. The corresponding dual formulation is given by

max
y∈Y
− (F ∗(y) +G∗(−K∗y)) . (D)

Using conjugate theory, we write the so-called primal-dual formulation

min
x∈X

max
y∈Y
−F ∗(y) + ⟨Kx, y⟩+G(x). (PD)

Let us call the objective function of (PD) the min-max function. We recall that (x̄, ȳ) is a saddle
point of the min-max function if x̄ solves the primal problem (P) and ȳ solves the dual problem
(D).
A saddle point (x̄, ȳ) ∈ X × Y of this min-max function should satisfy the optimality conditions{

0Y ∈ Kx̄− ∂F ∗(ȳ),

0X ∈ K∗ȳ + ∂G(x̄).
(2.4)

The Chambolle-Plock algorithm alternates between updates of the primal and dual variables.
It relies on the using of the proximal operator to handle non-smooth terms. In [9], the authors
proposed Algorithm 5 as well as the following result.

Theorem 2.5.1 (Convergence). Let L = ∥K∥ ans suppose that (PD) has a saddle point. Choose
θ = 1, τσL2 < 1 and let (xk, x̄k, yk)k∈N defined as in Algorithm 5.
Then if the dimensions of the spaces X and Y are finite then there exists a saddle point (x∗, y∗)
such that xk → x∗ and yk → y∗.

Remark 22. It is worth noting that we chose to present in Theorem 2.5.1 a result concerning finite-
dimensional spaces, as this is directly relevant to our numerical experiments. However, the original
theorem by Chambolle and Pock is stated for possibly infinite-dimensional spaces and involves the
concept of a partial primal-dual gap. For a more detailed explanation and the full theorem, we
refer [9].

Remark 23. In principle, one could make other choices for θ under the condition that θ ∈ [0, 1].
However, the authors observed that getting estimations of the convergence was more straightforward
while imposing that θ = 1.

In order to apply the Chambolle-Pock method to our problem, we first reformulate the primal
problem in both special cases. For Special case one 2.4.1, we rewrite (PγG,T) as

inf
x∈X

max
1≤i≤n

{
T Ci
Ωi,γGi

(x)
}
⇐⇒ inf

(x,t)∈X×R

{
t+

n∑
i=1

δ
epiT

Ci
Ωi,γGi

(x, t)

}
(2.5)

and for Special case two 2.4.2, (PT) rewrites

inf
x∈X

max
1≤i≤n

{
T Ci
Ωi,δLi

(x)
}
⇐⇒ inf

(x,t)∈X×R

{
t+

n∑
i=1

δ
epiT

Ci
Ωi,δLi

(x, t)

}
. (2.6)

Then, we compute the Fenchel dual of both right hand side formulations of (2.5)-(2.6) which are
obtained via perturbation theory. We will detail our computations for the analysis of the first case,
noting that similar steps apply for the second case.

2.5. ALGORITHMS 29

Proposition 2.5.2. Under the assumptions of section 2.2, the Fenchel dual problem associated to
(PγG,T) is given by

sup
x∗
i∈X,λ∗

i∈R,
γ
C0
i
(x∗

i)≤λi,γG0
i
(x∗

i)≤λi,

i=1,··· ,n,∑n
i=1 x

∗
i=0X ,

∑n
i=1 λ

∗
i=1

{
−

n∑
i=1

σΩi(x
∗
i)

}
. (DF

γG,T)

Proof. Let us first introduce the perturbation function in order to formulate the Fenchel conjugate
dual associate to (PγG,T).

For ((x, t), (y, s)) ∈ (X × R)2, define Φ : (X × R)2 → R̄ by

Φ((x, t), (y, s)) := t+ s+
n∑

i=1

δ
epiT Ci

Ωi,γGi

(x+ y, t+ s)

Let us first compute its conjugate.

Φ∗((x∗, t∗), (y∗, s∗)) = sup
x∈X,t∈R
y∈X,s∈R

{
⟨((x∗, t∗), (y∗, s∗)) , ((x, t), (y, s))⟩ − Φ ((x, t), (y, s))

}

= sup
x∈X,t∈R
y∈X,s∈R

{
⟨((x∗, t∗), (y∗, s∗)) , ((x, t), (y, s))⟩ −

(
t+ s+

n∑
i=1

δ
epiT Ci

Ωi,γGi

(x+ y, t+ s)

)}

= sup
x∈X

{
n∑

i=1

⟨x∗i , x⟩+ sup
t∈R

[
n∑

i=1

⟨t∗i , t⟩+ sup
y∈X

{ n∑
i=1

⟨y∗i , y⟩

+ sup
s∈R

(n∑
i=1

⟨s∗i , s⟩ −

(
t+ s+

n∑
i=1

δ
epiT Ci

Ωi,γGi

(x+ y, t+ s)

))}]}

= sup
x∈X

{
n∑

i=1

⟨x∗i , x⟩+ sup
t∈R

[
n∑

i=1

⟨t∗i , t⟩+ sup
y∈X

{ n∑
i=1

⟨y∗i , z − x⟩

+ sup
s∈R

(n∑
i=1

⟨s∗i , τ − t⟩ −

(
τ +

n∑
i=1

δ
epiT Ci

Ωi,γGi

(z, τ)

))}]}

= sup
x∈X

{
n∑

i=1

⟨x∗i − y∗i , x⟩+ sup
t∈R

[
n∑

i=1

⟨t∗i − s∗i , t⟩+ sup
z∈X

{ n∑
i=1

⟨y∗i , z⟩

+ sup
τ∈R

(n∑
i=1

⟨s∗i −
1

n
, τ⟩ −

(
n∑

i=1

δ
epiT Ci

Ωi,γGi

(z, τ)

))}]}

=

n∑
i=1

sup
x∈X
⟨(x∗i − y∗i), x⟩+

n∑
i=1

sup
t∈R
⟨(t∗i − s∗i), t⟩+

sup
z∈X

{
n∑

i=1

⟨y∗i , z⟩+ sup
τ∈R

(
n∑

i=1

⟨s∗i −
1

n
, τ⟩ −

(
n∑

i=1

δ
epiT Ci

Ωi,γGi

(z, τ)

))}

= sup
x∈X
⟨

n∑
i=1

(x∗i − y∗i), x⟩+ sup
t∈R
⟨

n∑
i=1

(
t∗i − s∗i −

1

n

)
, t⟩

2.5. ALGORITHMS 30

+ sup
z∈X

{
n∑

i=1

⟨y∗i , z⟩+ sup
τ∈R

(
n∑

i=1

⟨s∗i , τ⟩ −

(
n∑

i=1

δ
epiT Ci

Ωi,γGi

(z, τ)

))}
,

where the last equality was obtained after a change of variable involving the variable s∗.
In particular, it yields that

Φ∗((0X , 0), (y
∗, s∗)) = sup

x∈X
⟨−

n∑
i=1

y∗i , x⟩+ sup
t∈R
⟨−

n∑
i=1

s∗i − 1, t⟩

+
n∑

i=1

sup
z∈X,
τ∈R

{
⟨y∗i , z⟩+ ⟨s∗i , τ⟩ − δepiT Ci

Ωi,γGi

(z, τ)

}
.

(2.7)

From the first two terms of the right hand side of (2.7), we deduce that

n∑
i=1

y∗i = 0X ,

n∑
i=1

s∗i = −1.
(2.8)

Moreover, regarding the third term of the same equality (2.7), we have

n∑
i=1

sup
z∈X,
τ∈R

{
⟨y∗i , z⟩+ ⟨s∗i , τ⟩ − δepiT Ci

Ωi,γGi

(z, τ)

}
=

n∑
i=1

δ∗
epiT Ci

Ωi,γGi

(y∗i , s
∗
i) =

n∑
i=1

σ
epiT Ci

Ωi,γGi

(y∗i , s
∗
i).

(2.9)
By virtue of the perturbation theory and notably due to Young-Fenchel inequality, the dual problem
of (PγG,T) is given by

sup
x∗
i∈X,t∗i∈R,i=1,··· ,n

−Φ∗((0X , 0), (x
∗, t∗)),

which, thanks to (2.7)-(2.9), leads us to

sup
x∗
i∈X,t∗i∈R,
i=1,··· ,n,∑n

i=1 x
∗
i=0X ,

∑n
i=1 t

∗
i=−1

{
−

n∑
i=1

σ
epiT Ci

Ωi,γGi

(x∗i , t
∗
i)

}
.

Finally, using the following result given in [11, Remark 3.8]

σ
epiT Ci

Ωi,γGi

(x∗i , t
∗
i) = min

λi>0,t∗i=−λi,
γ
C0
i
(x∗

i)≤λi,γG0
i
(x∗

i)≤λi

−σΩi(x
∗
i),

we deduce that the dual problem (DT) reformulates

sup
x∗
i∈X,λ∗

i∈R,
γ
C0
i
(x∗

i)≤λi,γG0
i
(x∗

i)≤λi,

i=1,··· ,n,∑n
i=1 x

∗
i=0X ,

∑n
i=1 λ

∗
i=1

{
−

n∑
i=1

σΩi(x
∗
i)

}
.

2.5. ALGORITHMS 31

A similar result is provided when addressing Special case two 2.4.2.

Proposition 2.5.3. Under the assumptions of section 2.2, the Fenchel dual problem associated to
(PT) is given by

sup
x∗
i∈X,λ∗

i∈R,
γ
C0
i
(x∗

i)≤λi,

i=1,··· ,n,∑n
i=1 x

∗
i=0X ,

∑n
i=1 λ

∗
i=1

{
−

n∑
i=1

[σΩi(x
∗
i) + σLi(x

∗
i)]

}
. (DF

T)

Let us now check the assumptions and the corresponding framework of the Chambolle-Pock
algorithm. As previously, we will provide a detailed analysis for Special case one 2.4.1 and the
methodology for Special case one 2.4.1 will follow analogous steps.
We adopte the notation ((x, t)ni=1) = ((x, t), · · · , (x, t)) and we set, for all x ∈ X, xi ∈ X, i =
1, · · · , n and for all t ∈ R, ti ∈ R, i = 1, · · · , n,

K(x, t) = ((x, t)ni=1), F ((xi, ti)
n
i=1) =

n∑
i=1

δ
epiT

Ci
Ωi,γGi

(xi, ti), G((x, t)) = t.

Introducing corresponding dual variables x∗ ∈ X, x∗i ∈ X, i = 1, · · · , n and t∗ ∈ R, t∗i ∈ R, i =
1, · · · , n, we can easily make the following observations

K∗ ((x∗i , t
∗
i)

n
i=1) = (

n∑
i=1

x∗i ,
n∑

i=1

t∗i),

G∗((x∗, t∗)) = σX×R (x∗, t∗ − 1) ,

G∗(−K∗ ((x∗i , t
∗
i)

n
i=1)) = σX×R

(
−

n∑
i=1

x∗i ,−
n∑

i=1

t∗i − 1

)
,

F (K(x, t)) =
n∑

i=1

δ
epiT

Ci
Ωi,γGi

(x, t),

F ∗((x∗i , t
∗
i)

n
i=1) =

n∑
i=1

σ
epiT

Ci
Ωi,γGi

(x∗i , t
∗
i).

The optimality conditions (2.4) rewrites 0X ∈ ((x, t)ni=1)− ∂
(∑n

i=1 σepiTCi
Ωi,γGi

)
(x∗i , t

∗
i),

0 ∈ (
∑n

i=1 x
∗
i ,
∑n

i=1 t
∗
i) + ∂(t),

,

which yields by the subdifferential rule given in Theorem 1.1.22 ((x, t)ni=1) ∈
∑n

i=1 ∂σepiTCi
Ωi,γGi

(x∗i , t
∗
i),

(
∑n

i=1 x
∗
i ,
∑n

i=1 t
∗
i) = (0X ,−1).

Given the initial data ((x, t)0, (y, λ)0) ∈ (X × R)× ((X)n × Rn), and constants σ, τ > 0, θ ∈ [0, 1],
setting (x̄, t̄)0 = (x, t)0, Algorithm 5 rewrites in our case

(yk+1, λk+1) = proxσ
∑n

i=1 σepiT
Ci
Ωi,γGi

(
(yk, λk) + σK(x̄k, t̄k)

)
,

(xk+1, tk+1) = proxτG
(
(xk, tk)− τK∗(yk+1, λk+1)

)
,

(x̄k+1, t̄k+1) = (xk+1, tk+1) + θ
(
(xk+1, tk+1)− (xk, tk)

)
.

(2.10)

2.5. ALGORITHMS 32

Using Proposition 1.1.28, identity 1.10 and the extended Moreau decomposition formula 1.13 we
can deduce that

proxσ
∑n

i=1 σepiT
Ci
Ωi,γGi

(
(yk, λk) + σK(x̄k, t̄k)

)
=

(
prox

σepiT
Ci
Ωi,γGi

(
(yki , λ

k
i) + σ(x̄k, t̄k)

))n

i=1

=

((
I − σprox

σ−1epiT
Ci
Ωi,γGi

)(
σ−1(yki , λ

k
i) + (x̄k, t̄k)

))n

i=1

=

((
I − σP

epiT
Ci
Ωi,γGi

)(
σ−1(yki , λ

k
i) + (x̄k, t̄k)

))n

i=1

.

(2.11)

Then, (2.10) reformulates
(yk+1

i , λk+1
i) = (yki , λ

k
i) + σ(x̄k, t̄k)− σP

epiT
Ci
Ωi,γGi

(
σ−1(yki , λ

k
i) + (x̄k, t̄k)

)
, i = 1, · · · , n,

(xk+1, tk+1) = (xk, tk)− τ
(∑n

i=1 y
k+1
i ,

∑n
i=1 λ

k+1
i + 1

)
,

(x̄k+1, t̄k+1) = (xk+1, tk+1) + θ
(
(xk+1, tk+1)− (xk, tk)

)
.

(2.12)
Finally, we can now present the algorithm when applied for our Special case one 2.4.1 and Special
case two 2.4.2.

Algorithm 1 Chambolle-Pock Algorithm - Special Case One

1: Input: Choose and constants σ, τ > 0, θ ∈ [0, 1]. Set (x̄, t̄)0 = (x, t)0.
2: For k ≥ 0 do
3: for i = 1, · · · , n do
4: yk+1

i = yki + σx̄k − σPiPepiT
Ci
Ωi,γGi

(
σ−1(yki , λ

k
i) + (x̄k, t̄k)

)
5: end for
6: for i = 1, · · · , n do
7: λk+1

i = λki + σt̄k − σPn+iPepiT
Ci
Ωi,γGi

(
σ−1(yki , λ

k
i) + (x̄k, t̄k)

)
8: end for
9: xk+1 = xk − τ

∑n
i=1 y

k+1
i

10: tk+1 = tk − τ
(∑n

i=1 λ
k+1
i + 1

)
11: x̄k+1 = xk+1 + θ

(
xk+1 − xk

)
12: t̄k+1 = tk+1 + θ

(
tk+1 − tk

)
13: End for

where Pi is the projection onto the i-th component.

Similarly, regarding the second case, we have the following.
We would like to explicit the formula of the projection onto the epigraph of the two perturbed

minimal time functions TCi
Ωi,γGi

and TCi
Ωi,δLi

, i = 1, · · · , n .

Inspired by [14] where the authors stated and proved the result with respect to the gauge
function γC , we give the following theorem, considering this time the extended perturbed minimal
time function T C

Ω,γG
= γC δΩ γG.

2.5. ALGORITHMS 33

Algorithm 2 Chambolle-Pock - Special Case Two

1: Input: Choose ((x, t)0, (y, λ)0) ∈ (X × R)× (Xn × Rn), and constants σ, τ > 0, θ ∈ [0, 1]. Set
(x̄, t̄)0 = (x, t)0.

2: For k ≥ 0 do
3: for i = 1, · · · , n do
4: yk+1

i = yki + σx̄k − σPiPepiT
Ci
Ωi,δLi

(
σ−1(yki , λ

k
i) + (x̄k, t̄k)

)
5: end for
6: for i = 1, · · · , n do
7: λk+1

i = λki + σt̄k − σPn+iPepiT
Ci
Ωi,δLi

(
σ−1(yki , λ

k
i) + (x̄k, t̄k)

)
8: end for
9: xk+1 = xk − τ

∑n
i=1 y

k+1
i

10: tk+1 = tk − τ
(∑n

i=1 λ
k+1
i + 1

)
11: x̄k+1 = xk+1 + θ

(
xk+1 − xk

)
12: t̄k+1 = tk+1 + θ

(
tk+1 − tk

)
13: End for

where Pi is the projection onto the i-th component.

Theorem 2.5.4. Let C be a closed convex subset of X such that 0X ∈ C. Then it holds for every
(x, ξ) ∈ X × R that

P
epiT Ci

Ωi,γGi

(x, ξ) =

(x, ξ) , if T Ci
Ωi,γGi

(x) ≤ ξ,(
P
cl

(
domT Ci

Ωi,γGi

)(x), ξ
)
, if x /∈ domT Ci

Ωi,γGi

and T Ci
Ωi,γGi

(
P
cl

(
domT Ci

Ωi,γGi

)(x)
)
≤ ξ < T Ci

Ωi,γGi
(x),

(ȳ, θ̄), otherwise,

where
ȳ = x− prox

λ̄−1

(
δ
C0
i
∩G0

i
+σΩ

) (λ̄−1x
)

and θ̄ = λ̄+ ξ,

and λ̄ > 0 is a solution of an equation of the form

λ+ ξ =⟨x,prox
λ−1

(
δ
C0
i
∩G0

i
+σΩi

) (λ−1x
)
⟩X − λ

∥∥∥prox
λ−1

(
δ
C0
i
∩G0

i
+σΩi

) (λ−1x
) ∥∥∥2

X

− σΩi

(
prox

λ−1

(
δ
C0
i
∩G0

i
+σΩi

) (λ−1x
))

.

Proof. Let us consider for fixed (x, ξ) ∈ X × R the following optimization problem

min
(y,θ)∈X×R,
T Ci
Ωi,γGi

(y)≤θ

{
1

2
(θ − ξ)2 + 1

2

∥∥∥y − x∥∥∥2
X

}
. (2.13)

2.5. ALGORITHMS 34

If T Ci
Ωi,γGi

(x) ≤ ξ -in which case (x, ξ) ∈ epiT Ci
Ωi,γGi

-, then it is obvious that (ȳ, θ̄) = (x, ξ).

In the following, we consider the non-trivial case where T Ci
Ωi,γGi

(x) > ξ.

We define the functions f : X × R→ R and g : X × R→ R by

f(y, θ) :=
1

2
(θ − ξ)2 + 1

2

∥∥∥y − x∥∥∥2
X
, g(y, θ) = T Ci

Ωi,γGi
(y)− θ.

It is easy to see that f is continuous and strongly convex, and g is proper, lower semicontinuous,
and convex by [13, Theorem 2.1]. As 0X ∈ Ci∩Gi, we have T Ci

Ωi,γGi
(0) < 1, it follows by [8, Theorem

3.3.16] that
0 ∈ ∂(f + λ̄g)(ȳ, θ̄) (2.14)

and {
λ̄g(ȳ, θ̄) = 0,

g(ȳ, θ̄) ≤ 0,

or equivalently {
λ̄(T Ci

Ωi,γGi
(ȳ)− θ̄) = 0,

T Ci
Ωi,γGi

(ȳ) ≤ θ̄,
(2.15)

where (ȳ, θ̄) is the unique solution of (2.13) and λ̄ ≥ 0 is the associated Lagrange multiplier.
Furthermore, from [8, Theorem 3.5.13] one gets that

0 ∈ ∂(f + λ̄g)(ȳ, θ̄) ⇐⇒ 0 ∈ ∂f(ȳ, θ̄) + ∂(λ̄g)(ȳ, θ̄). (2.16)

1. If λ̄ = 0, then it follows by identity (1.10) and equivalence (1.11) that

0 ∈ ∂f(ȳ, θ̄) + ∂δdomg(ȳ, θ̄) ⇐⇒ 0 ∈ (ȳ − x, θ̄ − ξ) + ∂δ
domT Ci

Ωi,γGi
×R(ȳ, θ̄)

⇐⇒ 0 ∈ (ȳ − x, θ̄ − ξ) + ∂δ
cl

(
domT Ci

Ωi,γGi

)
×R

(ȳ, θ̄)

⇐⇒ (x− ȳ, ξ − θ̄) ∈ ∂δ
cl

(
domT Ci

Ωi,γGi

)
×R

(ȳ, θ̄)

⇐⇒ (ȳ, θ̄) = P
cl

(
domT Ci

Ωi,γGi

)
×R

(x, ξ)

⇐⇒ ȳ = P
cl

(
domT Ci

Ωi,γGi

)(x) and θ̄ = ξ,

and thus, it holds by the feasibility condition (2.15) that T Ci
Ωi,γGi

(
P
cl

(
domT Ci

Ωi,γGi

)(x)
)
≤ ξ,

from which follows that P
cl

(
domT Ci

Ωi,γGi

)(x) ∈ domT Ci
Ωi,γGi

.

(a) If x ∈ domT Ci
Ωi,γGi

, then P
cl

(
domT Ci

Ωi,γGi

)(x) = x which would imply by the feasibility

condition (2.15) that T Ci
Ωi,γGi

(x) ≤ ξ, which contradicts our assumption.

(b) If x /∈ domT Ci
Ωi,γGi

and the inequalities T Ci
Ωi,γGi

(
P
cl

(
domT Ci

Ωi,γGi

)(x)
)
≤ ξ < T Ci

Ωi,γGi
(x)

hold, then
(
ȳ, θ̄
)
=

(
P
cl

(
domT Ci

Ωi,γGi

)(x), ξ
)
.

2.5. ALGORITHMS 35

2. If λ̄ > 0, then we deduce from (2.16) and equivalence (1.11) that

0 ∈ ∂(f + λ̄g)(ȳ, θ̄) ⇐⇒ 0 ∈ ∂f(ȳ, θ̄) + λ̄∂g(ȳ, θ̄)

⇐⇒ ∇f(ȳ, θ̄) ∈ −λ̄∂g(ȳ, θ̄)
⇐⇒ (ȳ − x, θ̄ − ξ) ∈ −λ̄∂(T Ci

Ωi,γGi
(ȳ)− θ̄),

⇐⇒

{
ȳ − x ∈ −λ̄∂(T Ci

Ωi,γGi
)(ȳ),

θ̄ − ξ = λ̄,

so that ȳ = prox
λ̄T Ci

Ωi,γGi

(x),

θ̄ = ξ + λ̄.
(2.17)

By combining (2.17) and (2.15) we derive that T Ci
Ωi,γGi

(ȳ) = ξ+ λ̄. Finally, by [13, Lemma 2.1

and Remark 2.2] it holds that
(
T Ci
Ωi,γGi

)∗
= δC0

i
+ δG0

i
+ σΩ. Then, by the extended Moreau

decomposition formula (1.13), one has

ȳ = prox
λ̄T Ci

Ωi,γGi

(x) =x− λ̄prox
λ̄−1

(
T Ci
Ωi,γGi

)∗
(
λ̄−1x

)
=x− λ̄prox

λ̄−1

(
δ
C0
i
+δ

G0
i
+σΩi

) (λ̄−1x
)

=x− λ̄prox
λ̄−1

(
δ
C0
i
∩G0

i
+σΩi

) (λ̄−1x
)
.

(2.18)

Furthermore, it yields by identity (1.14) that

λ̄+ ξ = T Ci
Ωi,γGi

(ȳ)

=T Ci
Ωi,γGi

(
prox

λ̄T Ci
Ωi,γGi

(x)

)
±
(
δC0

i
+ δG0

i
+ σΩi

)(
prox

λ̄−1

(
δ
C0
i
+δ

G0
i
+σΩi

) (λ̄−1x
))

=⟨prox
λ̄T Ci

Ωi,γGi

(x),prox
λ̄−1

(
δ
C0
i
+δ

G0
i
+σΩi

) (λ̄−1x
)
⟩X

−
(
δC0

i
+ δG0

i
+ σΩi

)(
prox

λ̄−1

(
δ
C0
i
+δ

G0
i
+σΩi

) (λ̄−1x
))

=⟨x− λ̄

(
prox

λ̄−1

(
δ
C0
i
+δ

G0
i
+σΩi

) (λ̄−1x
))

,prox
λ̄−1

(
δ
C0
i
+δ

G0
i
+σΩi

) (λ̄−1x
)
⟩X

−
(
δC0

i
+ δG0

i
+ σΩi

)(
prox

λ̄−1

(
δ
C0
i
+δ

G0
i
+σΩi

) (λ̄−1x
))

=⟨x, prox
λ̄−1

(
δ
C0
i
+δ

G0
i
+σΩi

) (λ̄−1x
)
⟩X − λ̄

∥∥∥prox
λ̄−1

(
δ
C0
i
+δ

G0
i
+σΩi

) (λ̄−1x
) ∥∥∥2

X

−
(
δC0

i
+ δG0

i
+ σΩi

)(
prox

λ̄−1

(
δ
C0
i
+δ

G0
i
+σΩi

) (λ̄−1x
))

(2.19)

2.5. ALGORITHMS 36

=⟨x,prox
λ̄−1

(
δ
C0
i
∩G0

i
+σΩi

) (λ̄−1x
)
⟩X − λ̄

∥∥∥prox
λ̄−1

(
δ
C0
i
∩G0

i
+σΩi

) (λ̄−1x
) ∥∥∥2

X

−
(
δC0

i ∩G0
i
+ σΩi

)(
prox

λ̄−1

(
δ
C0
i
∩G0

i
+σΩi

) (λ̄−1x
))

=⟨x,prox
λ̄−1

(
δ
C0
i
∩G0

i
+σΩi

) (λ̄−1x
)
⟩X − λ̄

∥∥∥prox
λ̄−1

(
δ
C0
i
∩G0

i
+σΩi

) (λ̄−1x
) ∥∥∥2

X

− σΩi

(
prox

λ̄−1

(
δ
C0
i
∩G0

i
+σΩi

) (λ̄−1x
))

,

(2.20)

where the last equality is obtained from [1] where the authors showed that under assumptions

on the functions f and g, one has proxf+g = proxf ◦ prox
f
g .

Naturally, when considering the second minimal time function, we get the following result,
which can be proven analogously to the previous one.

Theorem 2.5.5. Let C be a closed convex subset of X such that 0X ∈ C. Then it holds for every
(x, ξ) ∈ X × R that

P
epiT Ci

Ωi,δLi

(x, ξ) =

(x, ξ) , if T Ci
Ωi,δLi

(x) ≤ ξ,(
P
cl

(
domT Ci

Ωi,δLi

)(x), ξ
)
, ifx /∈ domT Ci

Ωi,δLi

and T Ci
Ωi,δLi

(
P
cl

(
domT Ci

Ωi,δLi

)(x)
)
≤ ξ < T Ci

Ωi,δLi
(x),

(ȳ, θ̄), otherwise,

where
ȳ = x− prox

λ̄−1

(
δ
C0
i
+σLi

+σΩi

) (λ̄−1x
)

and θ̄ = λ̄+ ξ,

and λ̄ > 0 is a solution of an equation of the form

λ+ ξ =⟨x,prox
λ−1

(
δ
C0
i
+σLi

+σΩi

) (λ−1x
)
⟩X − λ

∥∥∥prox
λ−1

(
δ
C0
i
+σLi

+σΩi

) (λ−1x
) ∥∥∥2

X

−
(
δC0

i
+ σLi + σΩi

)(
prox

λ−1

(
δ
C0
i
+σLi

+σΩi

) (λ−1x
))

.

Remark 24. It is important to note that in both cases, it is not trivial (if not impossible) to
determine a closed form representation of prox

λ

(
T Ci
Ωi,γGi

)∗ . Indeed, in the first instance, we have to

compute prox
λ̄−1

(
δ
C0
i
∩G0

i
+σΩi

) which stands as the proximal operator of the sum of two functions

while in the second one, we need to compute prox
λ̄−1

(
δ
C0
i
+σLi

+σΩi

) which corresponds to the

proximal operator of the sum of three functions. The issue, which exceeds the scope of our present

2.5. ALGORITHMS 37

work, has been partially addressed in [1] where the authors proposed the notion of f -proximal

operator of g denoted by proxfg and that generalizes the classical notion of the proximal operator
of g.

Remark 25. In [14], the autors considered the particular case where T Ci
Ωi,γGi

= γCi in which case they

dealt with proxλ̄−1δ
C0
i

= PC0
i
which can be computed with relative ease. Indeed, in that instance

(ȳ, θ̄) are given by
ȳ = x− PC0

i

(
λ̄−1x

)
and θ = λ̄+ ξ,

where λ̄ > 0 is a solution of an equation of the form

λ+ ξ = ⟨x,PC0
i

(
λ−1x

)
⟩X − λ

∥∥∥PC0
i

(
λ−1x

) ∥∥∥2
X
.

While we have proposed and proven the previous results, our upcoming numerical tests will
focus on examples where a closed-form representation of the proximal operators is available.
Let us next deploy the second method that we examined in our study.

2.5.2 Mirror descent algorithm

Mirror descent algorithm is a first-order optimization method generalizing gradient descent which
involves minimizing a regularized objective in each iteration.
Let us begin by presenting the framework on which relies this method. We suppose, for simplicity,
that the optimization takes place in the Euclidean space Rn.
The main idea of mirror descent is to explicitely distinguish between the primal and dual spaces
and to specify a useful bijection (called mirror map) between this two spaces. For that purpose,
we introduce a function Φ : Rn → R.
Instead of taking gradient steps in the primal space, the mirror descent method takes gradient steps
in the dual space. The bijection ∇Φ and its inverse (∇Φ)∗ are used to map back and forth between
primal points and dual points. While our focus is on constrained optimization over a convex set,
say C, the gradient step may have produced a point outside of C. To address this issue, we project
that point onto C under the so-called Bregman divergence DΦ. Let us first introduce this notion.

Definition 2.5.6. Let C be a closed and convex subset of Rn. Let Φ : C → R be a continuously-
differentiable and convex function. The first-order approximation of Φ at x ∈ C is

Φ(x) = Φ(y) + ⟨∇Φ(y), x− y⟩, ∀y ∈ C.

The Bregman divergence is defined to be

DΦ(x, y) = Φ(x)− Φ(y)− ⟨∇Φ(y), x− y⟩, ∀x ∈ C, ∀y ∈ C.

The projection of y onto C under the Bregman divergence is

PΦ
C(y) = argmin

x∈X
DΦ(x, y).

Remark 26. The Bregman divergence possesses several properties that we choose to omit. For
details about this notion, we refer to the existing literature.
We claim that the projection under the Bregman divergence satisfies, like the usual projection, the
property

⟨∇Φ(y)−∇Φ
(
PΦ
C(y)

)
, x− PΦ

C(y)⟩ ≤ 0, ∀x ∈ X.

2.5. ALGORITHMS 38

Remark 27. It is worth-mentioning that if Φ(x) = 1
2∥x∥

2, then DΦ(x, y) = 1
2∥x − y∥

2. We will
restrict ourselves to this case in our experiments.

Definition 2.5.7. Let f : Rn → R̄ be a proper, convex and lower semicontinuous function and
H : Rn → R̄ be a proper, convex, lower semicontinuous and σ-strongly convex function where
σ > 0. The Bregman-proximal operator of f with respect to H is defined as

proxHγf : dom∇H → Rn

x 7→ argminy∈X {f(y) +DH(y, x)} .

Remark 28. When H = 1
2∥ · ∥

2, the Bregman-proximal operator reduces to the classical proximal
operator.

Our task is to implement in Algorithm 6 a deterministic version of the stochastic incremental
mirror descent algorithm with Nesterov smoothing .
Let us make the following assumptions.

� C ⊆ Rn is a nonempty convex and closed set.

� fi : Rp → R is a proper convex and semicontinuous function for i = 1, . . . ,m.

� Ai : Rn → Rp is a linear operator such that

f ◦Ai(x) = sup
u∈domf∗

{⟨Aix, u⟩ − f∗(u)} , ∀x ∈ Rp, for i, · · · ,m.

� g : Rn → R is a proper, convex and lower semicontinuous function satisfying

C ∩

(
m⋂
i=1

dom(fi ◦Ai)

)
∩ dom g ̸= ∅.

Consider the problem

inf
x∈C

{
n∑

i=1

fi(Aix) + g(x)

}
. (PA)

Employing the smoothing of the functions fi for i = 1, . . . ,m via the Moreau-envelope (1.8), which
was suggested in [6, Section 4], we obtain

(fγi ◦Ai) (x) =

(
fi□

1

2γ
∥ · ∥2

)
(Aix) , ∀x ∈ Rn

while the gradients are given by virtue of Proposition 1.1.32 as

∇ (fγi ◦Ai) (x) = γ−1A∗
i

(
Aix− proxγfi (Aix)

)
, ∀x ∈ Rn.

We adapt Algorithm 6 to our minimax location problem, considering it within a deterministic
framework with a specific function H.
Indeed, taking H(x) = 1

2∥x∥
2, one deduces immediately that

H∗(x) =
1

2
∥x∥2, ∇H(x) = ∇H∗(x) = x, proxHνg = proxνg, ∀x ∈ Rn, ∀ν > 0.

In particular, the function H verifies the assumptions given in [6, Problem 4.1]. Thus, considering
parameters γk > 0, stepsizes νk > 0, for k ≥ 0, and a deterministic setting we obtain the following
instance of mirror descent proximal point algorithm.

2.5. ALGORITHMS 39

Algorithm 3 Mirror Descent Algorithm

1: Input: Choose x0 ∈ C, the smoothing parameters γk > 0 and the step sizes νk > 0, for k ≥ 0.
2: For k ≥ 0 do
3: ψk

0 := xk

4: for i := 1, . . . ,m do
5: ψk

i := ψk
i−1 − νk

γkA
∗
i

(
Aiψ

k
i−1 − proxγkfi

(
Aiψ

k
i−1

))
6: end for
7: xk+1 := proxνkg(ψ

k
m)

8: End for

Remark 29. It is important to note that our choice to focus on a deterministic framework is
driven by the fact that a stochastic approach is typically advantageous for problems with very
large dimensions. Since this is not the case here, a deterministic approach is more suitable for our
purposes.

The convergence of Algorithm 3 is guaranteed by the following two results, which are based on
[6, Theorem 4.2 and Corollary 4.2]

Theorem 2.5.8. Let the sequence (xk)k be generated by Algorithm 3. Let δ > 0 and let γk := νk δ
σ .

Then for all N ≥ 1 and all y ∈ Rn, one has

min
0≤k≤N−1

(
m∑
i=1

fi ◦Ai + g

)
(xk+1)−

(
m∑
i=1

fi ◦Ai + g

)
(y)

≤

1
2∥y − x

0∥2 + 1
σ

(
δ
∑m

i=1Ddomf∗
i
+ 4

(∑m
i=1 ∥Ai∥

√
Ddomf∗

i

)2 (√
m+ 3

2 +m
))∑N−1

k=0 ν
2
k∑N−1

k=0 νk
.

Corollary 2.5.9. Let x∗ ∈ dom H be an optimal solution to (PA). Let δ > 0 and let γk := νk δ
σ .

Then the optimal stepsize for Algorithm 3 is given by

νk :=

√√√√ σ
2 ∥y − x0∥2

δ
∑m

i=1Ddomf∗
i
+ 4

(∑m
i=1 ∥Ai∥

√
Ddomf∗

i

)2 (√
m+ 3

2 +m
) 1√

k
, ∀k ≥ 0,

which yields for every N ≥ 1

min
0≤k≤N−1

(
m∑
i=1

fi ◦Ai + g

)
(xk)−

(
m∑
i=1

fi ◦Ai + g

)
(x∗)

≤ 2

√√√√√ 1
2∥y − x0∥2

(
δ
∑m

i=1Ddomf∗
i
+ 4

(∑m
i=1 ∥Ai∥

√
Ddomf∗

i

)2 (√
m+ 3

2 +m
))

σ

1√
N
.

Remark 30. In our numerical tests, detailed in the next section, we opted for a constant stepsize
ν, as it yielded more effective results.

2.6. NUMERICAL EXPERIMENTS 40

2.6 Numerical experiments

The experiments were conducted on a DELL Latitude 7420 PC equipped with an 11th Gen Intel(R)
Core(TM) i7-1185G7 processor running at 3.00 GHz with a base frequency of 1.80 GHz.
Before presenting our numerical results, it is important to clarify that, for all subsequent tests,
the origin was consistently used as the starting point. Additionally, to ensure a fair comparison
between the algorithms, we employed a uniform stopping criterion across all tests, defined by the
accuracy levels ϵ1 = 10−3, ϵ2 = 10−4, ϵ3 = 10−6 and ϵ4 = 10−8 where for i = 1, 2, 3, 4, ϵi represents
the maximum difference between the solutions obtained from two consecutive iterations.
The results presented in the tables reflect the best performance for each method, determined by
the optimal choice of parameters specific to each algorithm. In this section, we will deploy our
numerical tests while considering a special instance Special case two 2.4.2. Indeed, let us take

X = Rd, γCi = ∥.∥, Ωi = {pi}, Li = {0Rd}, i = 1, · · · , n,

where for i = 1, · · · , n, pi is a given point in Rd.
Hence, we have, for all i = 1, · · · , n and for all x ∈ Rd, TCi

Ωi,δLi
(x) = ∥x− pi∥, and PT rewrites

inf
(x,t)∈X×R

{
t+

n∑
i=1

δepi∥.−pi∥(x, t)

}
. (2.21)

For the implementation of Algorithm 2, we will require Lemma 3.6.5 and corollary 3.6.4 which were
given and proved [14].

Example 2.6.1. We first consider a basic example where d = 2 and n = 3.
Take p1 = (2,−1)T , p2 = (−3, 2)T , p3 = (4, 5)T .

Remark 31. We can make the following interpretation. The three points represent the location of
three given facilities and the goal is to determine the coordinates in the plane (we treat a simplified
version of the real-world problem, which would typically lie in a higher-dimensional space) for
the location of a new facility to be constructed. The problem involves minimizing the maximum
distance between the existing facilities and the new facility to be implemented.

We compare our fundings with the ones obtained using the parallel splitting method proposed
by [11]. We recall that they implemented in Algorithm 3.6.2 a version of the Douglas-Rachford
method for both the primal and dual problems.

MATLAB computed via the Chambolle-Pock algorithm (as well as the primal parallel splitting),
an optimal solution illustrated in Figure 2.1a given by

x̄ = (0.8333, 2.7222)⊤ , t̄ = 3.9008,

while the optimal primal objective value is v(P) = 3.9008.
The results presented in Table 2.1 - Table 2.4 show that the Chambolle-Pock method consistently

outscores both its primal and dual splitting counterparts across all error tolerances, excelling in
both the number of iterations required for convergence and computational time. We will provide a
more detailed comparison when we will examine the next example that involves a greater number
of points.

When implementing the mirror descent, we run our MATLAB programs for various stepsizes
ν > 0 as well as multiple parameters δ > 0.
We observed that the results were significantly influenced by the choice of the parameters, partic-
ularly the value of ν. To illustrate this, we present in Table 2.5 - Table 2.7 the results obtained by

2.6. NUMERICAL EXPERIMENTS 41

Algorithm Primal Dual Chambolle-Pock
(ν = 24) (ν = 0.076) (σ = τ = 0.83, θ = 1)

Number of iterations 174 60 23
CPU time (seconds) 0.0310 0.0224 0.0136
Objective value 3.9012 3.8997 3.9008

Table 2.1: Comparison of splitting and Chambolle-Pock methods (d = 2, n = 3) for ϵ1 = 10−3

Algorithm Primal Dual Chambolle-Pock
(ν = 24) (ν = 0.076) (σ = τ = 0.83, θ = 1)

Number of iterations 223 106 31
CPU time (seconds) 0.0400 0.0240 0.0116
Objective value 3.9008 3.9008 3.9008

Table 2.2: Comparison of splitting and Chambolle-Pock methods (d = 2, n = 3) for ϵ2 = 10−4

Algorithm Primal Dual Chambolle-Pock
(ν = 24) (ν = 0.076) (σ = τ = 0.83, θ = 1)

Number of iterations 344 197 47
CPU time (seconds) 0.0442 0.0290 0.0120
Objective value 3.9008 3.9008 3.9008

Table 2.3: Comparison of splitting and Chambolle-Pock methods (d = 2, n = 3) for ϵ3 = 10−6

Algorithm Primal Dual Chambolle-Pock
(ν = 24) (ν = 0.076) (σ = τ = 0.83, θ = 1)

Number of iterations 469 288 63
CPU time (seconds) 0.0521 0.0298 0.0132
Objective value 3.9008 3.9008 3.9008

Table 2.4: Comparison of splitting and Chambolle-Pock methods (d = 2, n = 3) for ϵ4 = 10−8

Mirror descent (δ = 1) (ν = 0.1) (ν = 0.01) (ν = 0.001) (ν = 0.0001)

Number of iterations 86 306 2564 25241
CPU time (seconds) 0.0273 0.0460 0.2297 1.9225
Optimal primal solution (0.8667, 2.6303)T (0.8371, 2.7122)T (0.8337, 2.7212)T (0.8334, 2.7221)T

Objective value 3.7050 3.8810 3.8988 3.9006

Table 2.5: Performance of the mirror descent method with (d = 2, n = 3) for ϵ4 = 10−8

varying the values of the parameters δ and ν while considering the best accuracy related to error
tolerance ϵ4 = 10−8

As ν decreases from 0.1 to 0.0001, the number of iterations required for convergence increases
dramatically. The increase in computational time is consistent with the growing number of itera-

2.6. NUMERICAL EXPERIMENTS 42

(a) Optimal solution via Chambolle-Pock (b) Optimal solution via mirror descent

Figure 2.1: Visualization of an optimal solution to problem (d = 2, n = 3) via Chambolle-Pock and
mirror descent methods

Mirror descent (δ = 0.6127) (ν = 0.1) (ν = 0.01) (ν = 0.001) (ν = 0.0001)

Number of iterations 56 331 3115 30990
CPU time (seconds) 0.0327 0.0510 0.3263 2.3271
Optimal primal solution (0.8545, 2.6654)T (0.8356, 2.7163)T (0.8336, 2.72196)T (0.8334, 2.7222)T

Objective value 3.7892 3.8896 3.8997 3.9007

Table 2.6: Performance of the mirror descent method with (d = 2, n = 3) for ϵ4 = 10−8

Mirror descent (δ = 0.334) (ν = 0.1) (ν = 0.01) (ν = 0.001) (ν = 0.0001)

Number of iterations 198 670 5471 53708
CPU time (seconds) 0.0439 0.0770 0.4426 3.8048
Optimal primal solution (0.8447, 2.6926)T (0.8345, 2.7192)T (0.8335, 2.7219)T (0.8333, 2.7222)T

Objective value 3.8505 3.8958 3.9003 3.9007

Table 2.7: Performance of the mirror descent method with (d = 2, n = 3) for ϵ4 = 10−8

tions, indicating a trade-off between the choice of ν and the the desired efficiency.
MATLAB computed, via the mirror descent algorithm, an optimal solution illustrated in Figure

2.1b given by
x̄ = (0.8334, 2.7219)⊤ , t̄ = 3.9002,

while the optimal primal objective value is v(P) = 3.9002. In the following we compare the
performance of the mirror descent with the splitting methods for two values of the parameter ν
and a constant value δ = 0.6127.

The first observation is that the mirror descent algorithm requires for both choices of ν a higher
number of iterations and more computational time compared to both splitting methods.
With (δ = 0.6127, ν = 0.0005) , the mirror descent algorithm requires significantly more iterations
and computational time. Despite this, it produces an objective value very close to that of the
primal and dual splitting methods, suggesting that while the solution quality is comparable, the

2.6. NUMERICAL EXPERIMENTS 43

Algorithm Primal Dual Mirror descent (δ = 0.6127)
(ν = 24) (ν = 0.076) (ν = 0.005) (ν = 0.0005)

Number of iterations 174 60 618 11
CPU time (seconds) 0.0310 0.0224 0.0705 0.0236
Objective value 3.9012 3.8997 3.8953 4.1969

Table 2.8: Comparison of splitting and mirror descent methods (d = 2, n = 3) for ϵ1 = 10−3

Algorithm Primal Dual Mirror descent (δ = 0.6127)
(ν = 24) (ν = 0.076) (ν = 0.005) (ν = 0.0005)

Number of iterations 223 106 622 6194
CPU time (seconds) 0.0400 0.0240 0.0747 0.5993
Objective value 3.9008 3.9008 3.8952 3.9002

Table 2.9: Comparison of splitting and mirror descent methods (d = 2, n = 3) for ϵ2 = 10−4

Algorithm Primal Dual Mirror descent (δ = 0.6127)
(ν = 24) (ν = 0.076) (ν = 0.005) (ν = 0.0005)

Number of iterations 344 197 631 6202
CPU time (seconds) 0.0442 0.0290 0.0736 0.5188
Objective value 3.9008 3.9008 3.8952 3.9002

Table 2.10: Comparison of splitting and mirror descent methods (d = 2, n = 3) for ϵ3 = 10−6

Algorithm Primal Dual Mirror descent (δ = 0.6127)
(ν = 24) (ν = 0.076) (ν = 0.005) (ν = 0.0005)

Number of iterations 469 288 640 6211
CPU time (seconds) 0.0521 0.0298 0.0752 0.5755
Objective value 3.9008 3.9008 3.8952 3.9002

Table 2.11: Comparison of splitting and mirror descent methods (d = 2, n = 3) for ϵ4 = 10−8

increased computational effort does not yield a substantially better outcome.
While the mirror descent method with (δ = 0.6127, ν = 0.0005) offers marginal improvements in
objective value, it requires significantly more computational time and iterations compared to using
(δ = 0.6127, ν = 0.0005).

In the following example which involves larger data (n = 10), we will examine whether the
mirror descent method can outperform its splitting counterparts by appropriately selecting the
parameters. We will also emphasize the efficiency of the Chambolle-Pock method in the context of
our minimax location problem.

Example 2.6.2. Set n = 10 and consider the points p1 = (2, 5)T , p2 = (4,−3)T , p3 = (1,−5)T , p4 =
(7,−6)T , p5 = (6, 1)T , p6 = (3,−5)T , p7 = (6,−3)T , p8(−2, 3)T , p9 = (4, 3)T , p10 = (2,−7)T .
We run our MATLAB programs for various stepsizes σ, τ > 0 for the Chambolle-Pock algorithm

2.6. NUMERICAL EXPERIMENTS 44

and ν for the mirror descent as well as multiple parameters 0 ≤ θ ≤ 1 and δ respectively.
MATLAB computed, via both the Chambolle-Pock and the mirror descent algorithms (as well

as the primal parallel splitting), an optimal solution illustrated in Figure 2.2a and Figure 2.2b
respectively given by

x̄ = (2.6667,−1.3333)⊤ , t̄ = 6.3683,

while the optimal primal objective value is v(P) = 6.3683.

Algorithm Primal Dual Chambolle-Pock Mirror descent
(ν = 24) (ν = 0.076) (σ = τ = 0.83, θ = 1) (δ = 0.6127, ν = 0.00005)

Number of iterations 610 369 75 11
CPU time (seconds) 0.1371 0.0438 0.0140 0.0280
Objective value 6.3691 6.3695 6.3685 6.3687

Table 2.12: Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 2, n = 10)
for ϵ1 = 10−3

Algorithm Primal Dual Chambolle-Pock Mirror descent
(ν = 24) (ν = 0.076) (σ = τ = 0.83, θ = 1) (δ = 0.6127, ν = 0.00005)

Number of iterations 817 643 102 13
CPU time (seconds) 0.2161 0.0568 0.0145 0.0340
Objective value 6.3683 6.3683 6.3683 6.3692

Table 2.13: Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 2, n = 10)
for ϵ2 = 10−4

Algorithm Primal Dual Chambolle-Pock Mirror descent
(ν = 24) (ν = 0.076) (σ = τ = 0.83, θ = 1) (δ = 0.6127, ν = 0.00005)

Number of iterations 1232 1204 181 62
CPU time (seconds) 0.3118 0.0965 0.0180 0.0411
Objective value 6.3683 6.3683 6.3683 6.3683

Table 2.14: Comparison of splitting and Chambolle-Pock methods (d = 2, n = 10) for ϵ3 = 10−6

Algorithm Primal Dual Chambolle-Pock Mirror descent
(ν = 24) (ν = 0.076) (σ = τ = 0.83, θ = 1) (δ = 0.6127, ν = 0.00005)

Number of iterations 1647 1789 263 95
CPU time (seconds) 0.3995 0.1579 0.0202 0.0559
Objective value 6.3683 6.3683 6.3683 6.3683

Table 2.15: Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 2, n = 10)
for ϵ4 = 10−8

2.6. NUMERICAL EXPERIMENTS 45

(a) Optimal solution via Chambolle-Pock (b) Optimal solution via mirror descent

Figure 2.2: Visualization of an optimal solution to problem (d = 2, n = 10) via Chambolle-Pock
and mirror descent methods

The first observation of the results presented in Table 2.12 - Table 2.15 is that -in contrast
with our previous example- the mirror descent algorithm achieves convergence remarkably quickly,
requiring only 13 iterations for a tolerance of ϵ2 = 10−4 and 95 iterations for ϵ4 = 10−8. In contrast,
the two splitting methods are significantly slower, needing at least 600 iterations and up to 1800
iterations to converge for these same error tolerances. Furthermore, this method exhibits faster
computational times than both the primal and dual methods across different error tolerances. For
example, with ϵ4 = 10−8, it converges eight times faster than the primal method and three times
faster than the dual, all while achieving the same objective value.
[11], the authors have already demonstrated that the dual splitting algorithm requires fewer iter-
ations than the primal version. However, the Chambolle-Pock algorithm significantly outperforms
both, requiring 8 times fewer iterations than the primal algorithm and 6 times fewer than the dual
algorithm to reach convergence. Additionally, the Chambolle-Pock method exhibits faster compu-
tational times than both the primal and dual methods across different error tolerances. Precisely,
with an error tolerance of ϵ1 = 10−6, it converges 17 times faster than the primal method and
5 times faster than the latter’s dual counterpart. At ϵ4 = 10−8 accuracy, the Chambolle-Pock
algorithm requires 20 times less computational time than the primal splitting and almost 7 times
less than its dual counterpart, all while achieving the same objective value.
While comparing between the Chambolle-Pock and the mirror descent methods, the latter demon-
strates in this instance superior efficiency in terms of the number of iterations required for conver-
gence at both tolerance levels. In terms of computational time, while both methods outperform
the parallel splitting algorithms, the Chambolle-Pock method is faster than the mirror descent for
all error tolerances (for example, at ϵ4, 0.0202 compared to 0.0559 second). The objective values
obtained by both methods are very similar, indicating that both algorithms are effective in the
context of this facility location problem.

Example 2.6.3. Let us now consider an instance where n = 100. The points were generated using
MATLAB’s rand function, which produces uniformly distributed random numbers.

MATLAB computed

2.6. NUMERICAL EXPERIMENTS 46

� via the Chambolle-Pock algorithm, an optimal solution illustrated in Figure 2.3a given by

x̄ = (3.7488, 7.3316)⊤ , t̄ = 33.4969,

while the optimal primal objective value is v(P) = 33.4969,

� via the mirror descent, an optimal solution illustrated in Figure 2.3a given by

x̄ = (3.7506, 7.32153)⊤ , t̄ = 33.4860,

while the optimal primal objective value is v(P) = 33.4860.

Algorithm Primal Dual Chambolle-Pock Mirror descent
(ν = 27) (ν = 0.0046) (σ = τ = 0.69, θ = 1) (δ = 1, ν = 0.005)

Number of iterations 6549 2070 628 30
CPU time (seconds) 16.9174 2.3513 0.3182 0.1708
Objective value 33.4964 33.5087 33.4972 33.9451

Table 2.16: Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 2, n = 100)
for ϵ1 = 10−3

Algorithm Primal Dual Chambolle-Pock Mirror descent
(ν = 27) (ν = 0.0046) (σ = τ = 0.69, θ = 1) (δ = 1, ν = 0.005)

Number of iterations 8627 6057 670 5695
CPU time (seconds) 24.0446 3.9127 0.3763 18.3372
Objective value 33.4968 33.5003 33.4969 33.4859

Table 2.17: Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 2, n = 100)
for ϵ2 = 10−4

Algorithm Primal Dual Chambolle-Pock Mirror descent
(ν = 27) (ν = 0.0046) (σ = τ = 0.69, θ = 1) (δ = 1, ν = 0.005)

Number of iterations 12780 15914 755 5749
CPU time (seconds) 40.0198 10.0492 0.3789 17.4388
Objective value 33.4969 33.4970 33.4969 33.4860

Table 2.18: Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 2, n = 100)
for ϵ3 = 10−6

Table 2.16 - Table 2.19 highlight that mirror descent shows, compared to the splitting methods
and the Chambolle-Pock algorithm, some difficulty in converging to the exact objective value
in this case. While the other three methods successfully reached the optimal value of v(P) =
33.4969, the mirror descent converged to a slightly lower value of v(P) = 33.4860. Additionally,
as demonstrated in the previous example, the method’s high computational cost underscores its
sensitivity to parameter choices, particularly the value of ν.

2.6. NUMERICAL EXPERIMENTS 47

Algorithm Primal Dual Chambolle-Pock Mirror descent
(ν = 27) (ν = 0.0046) (σ = τ = 0.69, θ = 1) (δ = 1, ν = 0.005)

Number of iterations 16936 25670 840 5803
CPU time (seconds) 59.6376 20.8613 0.4375 22.3911
Objective value 33.4969 33.4969 33.4969 33.4860

Table 2.19: Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 2, n = 100)
for ϵ4 = 10−8

(a) Optimal solution via Chambolle-Pock (b) Optimal solution via mirror descent

Figure 2.3: Visualization of an optimal solution to problem (d = 2, n = 100) via Chambolle-Pock
and mirror descent methods

When considering a large number of points, the advantages of the Chambolle-Pock algorithm over
the splitting methods become even more outstanding. For instance, choosing an error tolerance of
ϵ2 = 10−4, it showcases convergence 65 times faster than the primal splitting while necessitating
13 times fewer iterations (respectively 9 times faster and 10 times fewer iterations than the dual).
With the highest accuracy of ϵ4 = 10−8, the Chambolle-Pock method converges to the solution with
20 times fewer iterations compared to the primal splitting method, while the computational cost is
reduced by a factor of 150 ! (0.4 second for the Chambolle-Pock method versus 59.6 seconds for the
primal splitting method). The ratio becomes 1/50 when comparing it to the dual method which is
remarkable taking into account that the latter doesn’t explicitely yields the optimal solution.

In the next examples, we will implement our method in R3 which is arguably a more suitable
space for studying location problems.

Example 2.6.4. Let us assert the previous tendancies by considering the example given in R3

by [11] where d = 3, n = 7, with p1 = (−8, 8, 8)T , p2 = (−7, 0, 0)T , p3 = (−4,−1, 1)T , p4 =
(2, 0, 2)T , p5 = (2,−6, 2)T , p6 = (7, 1, 1)T , p7 = (6, 5, 4)T , we have the following results.

MATLAB computed

� via the Chambolle-Pock algorithm -as well as the primal parallel splitting-, an optimal solution
illustrated in Figure 2.4a given by

x̄ = (−1.5166, 2.2381, 4.5835)⊤ , t̄ = 9.3224,

2.6. NUMERICAL EXPERIMENTS 48

while the optimal primal objective value is v(P) = 9.3224,

� via the mirror descent algorithm with ν = 0.005, an optimal solution illustrated in Figure
2.4b given by

x̄ = (−1.5181, 2.2364, 4.5839)⊤ , t̄ = 9.3199,

while the optimal primal objective value is v(P) = 9.3199.

Algorithm Primal Dual Chambolle-Pock Mirror descent (δ = 0.33)
(ν = 10) (ν = 0.055) (σ = τ = 0.83, θ = 1) (ν = 0.05) (ν = 0.005)

Number of iterations 473 142 70 531 3727
CPU time (seconds) 0.1026 0.0293 0.0217 0.1225 0.7506
Objective value 9.3228 9.3358 9.3224 9.2995 9.3298

Table 2.20: Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 3, n = 7)
for ϵ1 = 10−3

Algorithm Primal Dual Chambolle-Pock Mirror descent (δ = 0.33)
(ν = 10) (ν = 0.055) (σ = τ = 0.83, θ = 1) (ν = 0.05) (ν = 0.005)

Number of iterations 615 260 97 958 5248
CPU time (seconds) 0.1333 0.0319 0.0228 0.2480 1.0133
Objective value 9.3223 9.3229 9.3224 9.2977 9.3218

Table 2.21: Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 3, n = 7)
for ϵ2 = 10−4

Algorithm Primal Dual Chambolle-Pock Mirror descent (δ = 0.33)
(ν = 10) (ν = 0.055) (σ = τ = 0.83, θ = 1) (ν = 0.05) (ν = 0.005)

Number of iterations 897 503 151 1817 13836
CPU time (seconds) 0.1694 0.0423 0.0262 0.3719 3.0440
Objective value 9.3224 9.3224 9.3224 9.2977 9.3199

Table 2.22: Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 3, n = 7)
for ϵ3 = 10−6

Algorithm Primal Dual Chambolle-Pock Mirror descent (δ = 0.33)
(ν = 10) (ν = 0.055) (σ = τ = 0.83, θ = 1) (ν = 0.05) (ν = 0.005)

Number of iterations 1180 743 205 2675 22422
CPU time (seconds) 0.2078 0.0514 0.0278 0.5360 5.1840
Objective value 9.3224 9.3224 9.3224 9.2977 9.3199

Table 2.23: Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 3, n = 7)
for ϵ4 = 10−8

2.6. NUMERICAL EXPERIMENTS 49

(a) Optimal solution via Chambolle-Pock (b) Optimal solution via mirror descent

Figure 2.4: Visualization of an optimal solution to problem (d = 3, n = 7) via Chambolle-Pock and
mirror descent methods

Table 2.20 - Table 2.23 indicate Chambolle-Pock method once again significantly surpasses the
two parallel splitting algorithms, both in the number of iterations required for convergence and in
computational efficiency. For instance, when considering the tolerance ϵ1 = 10−3, the Chambolle-
Pock algorithm converges faster than the dual (twice as fast as the primal) while requiring half as
many iterations than the dual parallel splitting method (and almost 7 times less comparing to the
primal). At the highest accuracy considered, ϵ4 = 10−8, the Chambolle-Pock algorithm converges
twice as fast as the dual (and ten times faster than the primal) while requiring almost 4 times fewer
iterations than the dual splitting method (and 5 times less comparing to the primal).

The final two examples of this section will enable us to assess the performance of the Chambolle-
Pock and the mirror descent algorithms in R3 while considering a large number of points.

Example 2.6.5. Let us deploy a particular case in R3 with 50 points. The points were generated
using MATLAB’s rand function, which produces uniformly distributed random numbers.

MATLAB computed,

� via the Chambolle-Pock algorithm -as well as the primal parallel splitting-, an optimal solution
illustrated in Figure 2.5a given by

x̄ = (−1.8804,−2.3775,−0.4515)⊤ , t̄ = 15.4233,

while the optimal primal objective value is v(P) = 15.4233.

� via the mirror descent algorithm with ν = 0.01, an optimal solution illustrated in Figure 2.5b
given by

x̄ = (−1.8768,−2.3748,−0.4570)⊤ , t̄ = 15.4025,

while the optimal primal objective value is v(P) = 15.4025.

Per Table 2.24- Table 2.27, our first observation-unrelated to both Chambolle-Pock and mirror
descent algorithms-is that, unlike in all previous cases, the dual parallel method requires more
iterations than its primal counterpart (up to twice as many fo for ϵ4 = 10−8). It still reaches an
optimal solution faster than the primal method, completing the task in half the time for the same
accuracy.
We could argue that, with ν = 0.05, the mirror descent consistently requires fewer iterations and

2.6. NUMERICAL EXPERIMENTS 50

Algorithm Primal Dual Chambolle-Pock Mirror descent (δ = 1)
(ν = 10) (ν = 0.055) (σ = τ = 0.57, θ = 1) (ν = 0.05) (ν = 0.01)

Number of iterations 2790 2888 194 504 634
CPU time (seconds) 3.0294 0.8104 0.0696 0.8049 1.1607
Objective value 15.4239 15.4222 15.4233 15.3226 15.4357

Table 2.24: Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 3, n = 50)
for ϵ1 = 10−3

Algorithm Primal Dual Chambolle-Pock Mirror descent (δ = 1)
(ν = 10) (ν = 0.055) (σ = τ = 0.57, θ = 1) (ν = 0.05) (ν = 0.01)

Number of iterations 3789 5300 257 1215 3568
CPU time (seconds) 4.2070 1.3515 0.0906 1.9338 5.9118
Objective value 15.4234 15.4232 15.4233 15.3195 15.4033

Table 2.25: Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 3, n = 50)
for ϵ2 = 10−4

Algorithm Primal Dual Chambolle-Pock Mirror descent (δ = 1)
(ν = 10) (ν = 0.055) (σ = τ = 0.57, θ = 1) (ν = 0.05) (ν = 0.01)

Number of iterations 5786 10124 384 2635 10671
CPU time (seconds) 6.2922 2.4914 0.1353 4.2169 29.5845
Objective value 15.4233 15.4233 15.4233 15.3195 15.4025

Table 2.26: Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 3, n = 50)
for ϵ3 = 10−6

Algorithm Primal Dual Chambolle-Pock Mirror descent (δ = 1)
(ν = 10) (ν = 0.055) (σ = τ = 0.57, θ = 1) (ν = 0.05) (ν = 0.01)

Number of iterations 7784 14947 511 4056 17773
CPU time (seconds) 8.3364 3.3432 0.20269 6.2743 44.1431
Objective value 15.4233 15.4233 15.4233 15.3195 15.4025

Table 2.27: Comparison of splitting, Chambolle-Pock and mirror descent methods (d = 3, n = 50)
for ϵ4 = 10−8

is faster in computational time compared to the primal method, regardless of the error tolerance.
However, the reduced accuracy in the objective value (15.4233 for the primal and 15.3195 for mirror
descent) undermines this benefit. Using ν = 0.05, the computational cost, both in terms of the
number of iterations and CPU time, increases significantly. This raises questions about the benefit
of choosing this parameter, even though it yields an objective value that is closer to the exact one.
As for the Chambolle-Pock method, it consistently delivers the best performance across all metrics
and error tolerances. For instance, it achieves convergence at ϵ3 = 10−6, with 15 times fewer
iterations than the primal (and over 25 times fewer than the dual) while also being 48 times faster
in computation speed (and nearly 20 times faster than the dual).

2.6. NUMERICAL EXPERIMENTS 51

(a) Optimal solution via Chambolle-Pock (b) Optimal solution via mirror descent

Figure 2.5: Visualization of an optimal solution to problem (d = 3, n = 50) via Chambolle-Pock
and mirror descent methods

Example 2.6.6. Finally, let us mention an example in R3 with 100 points. The points were
generated using MATLAB’s rand function, which produces uniformly distributed random numbers.
We will in this instance apply the Chambolle-Pock method while testing different values of θ.

MATLAB computed, via the Chambolle-Pock algorithm (as well as the parallel splitting) an
optimal solution illustrated in Figure 2.6 given by

x̄ = (−4.2662,−0.0343, 0.6603)⊤ , t̄ = 28.6181,

while the optimal primal objective value is v(P) = 28.6181.

Algorithm Primal Dual Chambolle-Pock
(ν = 10) (ν = 0.055) (θ = 0.33) (θ = 0.5) (θ = 1)

Number of iterations 5010 4389 554 545 552
CPU time (seconds) 12.0047 3.2195 0.5792 0.4194 0.3263
Objective value 28.6184 28.5771 28.6184 28.6182 28.6182

Table 2.28: Comparison of splitting and Chambolle-Pock methods (d = 3, n = 100) for ϵ1 = 10−3

Algorithm Primal Dual Chambolle-Pock
(ν = 10) (ν = 0.055) (θ = 0.33) (θ = 0.5) (θ = 1)

Number of iterations 6725 9530 658 660 669
CPU time (seconds) 16.1302 7.4406 0.6951 0.6638 0.3461
Objective value 28.6182 28.6129 28.6182 28.6182 28.6181

Table 2.29: Comparison of splitting and Chambolle-Pock methods (d = 3, n = 100) for ϵ2 = 10−4

Table 2.28 - Table 2.31 confirm Chambolle-Pock algorithm is, across multiple values of its
parameters, remarkably efficient in both computational speed and the number of iterations required
for convergence. Indeed, regardless of the choice of θ, it outperforms in both metrics the primal and
dual splitting algorithms. It’s also worth mentioning that in their article, [11] already demonstrated
that their parallel splitting method outperforms a subgradient-based algorithm.
Based on the results, the choice θ = 1 appears to be the best for the Chambolle-Pock algorithm

2.7. DISCUSSION 52

Algorithm Primal Dual Chambolle-Pock
(ν = 10) (ν = 0.055) (θ = 0.33) (θ = 0.5) (θ = 1)

Number of iterations 10639 19672 888 891 903
CPU time (seconds) 24.8141 13.3049 1.0415 0.8813 0.4963
Objective value 28.6182 28.6182 .28.6182 28.6182 28.6181

Table 2.30: Comparison of splitting and Chambolle-Pock methods (d = 3, n = 100) for ϵ3 = 10−6

Algorithm Primal Dual Chambolle-Pock
(ν = 10) (ν = 0.055) (θ = 0.33) (θ = 0.5) (θ = 1)

Number of iterations 14613 29919 1118 1123 1136
CPU time (seconds) 37.9604 20.4486 1.1534 0.9432 0.6074
Objective value 28.6181 28.6181 28.6182 28.6182 28.6181

Table 2.31: Comparison of splitting and Chambolle-Pock methods (d = 3, n = 100) for ϵ4 = 10−8

when considering the CPU time. Although the choice θ = 1 requires slightly more iterations -
at ϵ4 = 10−8 accuracy, it requires 1136 iterations compared to 1123 with θ = 0.33 and θ = 0.5
respectively- the difference is minimal.
However, regarding computational time, the Chambolle-Pock algorithm with θ = 1 achieves the
fastest performance in all error tolerances. For instance, or ϵ4 = 10−8, it delivers the optimal
solution within 0.6074 second, significantly outperforming both θ = 0.5 (0.9432 second) and θ =
0.33 (1.1534 second).
The objective value is consistent across all values, confirming that the performance differences are
not due to variations in solution accuracy.

Remark 32. While alternative values for θ within the range [0, 1] were considered, extensive numer-
ical testing regarding the Chambolle-Pock method showed that θ = 1 consistently yielded the best
performance for the Chambolle-Pock algorithm. This choice corroborated the theoretical results
mentioned in Remark 23.

2.7 Discussion

� Witin our context, the Chambolle-Pock algorithm consistently excels, irrespective of the error
tolerance level. It significantly outperforms the splitting methods and the mirror descent
algorithm, both in terms of iteration efficiency and computational speed. Its advantages
become even more pronounced when dealing with a large number of points which asserts its
superiority over competing methods.

� It is important to insist on the fact that, as already showed by [11], the dual parallel splitting
method is more efficient than the primal version but does not explicitly yield an optimal
solution to the initial optimization problem. While an optimal solution can sometimes be re-
covered -via optimality conditions-, the remarkable advantage of the Chambolle-Pock method
is that it not only performs outstandingly better that the dual splitting algorithm but also
explicitly delivers an optimal solution to the problem at hand.

� The mirror descent algorithm tends to be less efficient than other methods, both in terms of

2.8. PERSPECTIVES ON FACILITY LOCATION OPTIMIZATION PROBLEMS 53

Figure 2.6: Visualization of an optimal solution to of problem (d = 3, n = 100 via Chambolle-Pock
method)

iterations and computational time, especially when the parameter ν is small. The challenge
is that while a smaller ν is required for achieving more precise convergence, it also results in
increased computational demands and more iterations, thus affecting overall efficiency.
The performance of the mirror descent method is significantly affected by the choice of param-
eters and step sizes. This dependence influences its ability to converge to the exact optimal
value, highlighting the importance of carefully selecting these parameters to balance accuracy
and computational efficiency. It can be argued that implementing the mirror descent method
in our context requires balancing computational efficiency with solution accuracy.

� Although more time-consuming than its splitting concurrents, the mirror descent method
maintains a relatively stable number of iterations across different accuracy levels, highlighting
its robustness in achieving high accuracy without a significant increase in iterations.

2.8 Perspectives on facility location optimization problems

2.8.1 Perspectives related to the Chambolle-Pock algorithm

We showed in the previous section that, in general, the Chambolle-Pock method outperforms
significantly both the parallel splitting and the mirror descent. Let us now discuss the main
downside that we have identify regarding the implementation of the Chambolle-Pock in the context
of our minimax location problem.
In fact, in all the examples that we presented previously, we considered Special case two 2.4.2 in
which case TCi

Ωi,δLi
is the extended minimal time function.

2.8. PERSPECTIVES ON FACILITY LOCATION OPTIMIZATION PROBLEMS 54

In that instance, while in [11], the authors considered the primal formulation

(PT) min
t>0,x∈Rd,

y∈(Rd)n,z∈(Rd)n

{
t+

n∑
i=1

δepiγCi
(x− yi − zi, t) +

n∑
i=1

δΩi(yi) +

n∑
i=1

δLi(zi)

}
,

while we opted for the following one

(PT) inf
(x,t)∈X×R

{
t+

n∑
i=1

δ
epiT

Ci
Ωi,δLi

(x, t)

}
. (2.22)

Essentially, in order to implement their parallel splitting algorithm in [11], the authors lever-
aged the splitting property of their method to decompose the infimal convolution in the objective
function. Unfortunately, we do not have this flexibility, as the conditions required for applying the
Chambolle-Pock algorithm do not permit such a choice of decomposition.
Indeed, in our previous investigations, we set

F (K(x, t)) =
n∑

i=1

δ
epiT

Ci
Ωi,δLi

(x, t).

Eventually, by taking γCi = ∥.∥,Ωi = {pi} and Li = {0Rd}, for i = 1, .., n, we managed to identify
a scenario where the infimal convolution reduces to a translated norm. Precisely, TCi

{pi},δ{0Rd}
=

∥.∥ δ{pi} δ{0Rd} = ∥.− pi∥ which yields in that case

F (K(x, t)) =

n∑
i=1

δepi∥.−pi∥(x, t),

where F is a separable function and K a uniquely defined continuous linear operator. As the
results given in [14] allowed us to compute the proximal operator of the function F , we were able
to implement the Chambolle-Pock method described previously.
However, if we assume that, for i = 1, · · · , n, Ωi is a less restrictive set, for example, in [11, Example
4.2], the authors considered the set Ωi =

{
x ∈ Rd : ∥x− pi∥∞ ≤ ai

}
, where ai is a nonnegative real

number, then the application of this method becomes compromised.
Indeed, in that instance, taking Li = {0Rd}, TCi

Ωi,δLi
= γCi δΩi δLi = ∥.∥ δΩi . While the

Douglas-Rachford splitting algorithm accommodates the inclusion in the objective function of the
terms

∑n
i=1 δepiγCi

(x−yi, t)+
∑n

i=1 δΩi(yi), the Chambolle-Pock algorithms restricts this flexibility
by requiring a single linear operator, thereby prohibiting the use of such splitting properties. In
that regard, we would need to handle the following terms

F (K(x, t)) =

n∑
i=1

δepi(∥.∥ δΩi)
(x, t).

which rewrites, as ∥.∥ δΩi = d(.,Ωi) is the distance function to Ωi,

F (K(x, t)) =

n∑
i=1

δepi(d(.,Ωi))(x, t). (2.23)

Unfortunately, to our knowledge, there are currently no explicit formulae for projecting onto the
epigraphs of functions defined by infimal convolutions (and in particular the sum 2.23). This is an
area where further research could prove valuable in the future.

2.8. PERSPECTIVES ON FACILITY LOCATION OPTIMIZATION PROBLEMS 55

2.8.2 Perspectives related to the mirror descent algorithm

Although we identified in Example 2.6.2 an instance where it is not the case, our proceedings show-
cased that, in general, the Chambolle-Pock algorithm outperforms the mirror descent method in
terms of efficiency and convergence speed. However, it is important to note that the Chambolle-Pock
algorithm operates under stricter assumptions. The mirror descent method , on the other hand, of-
fers the flexibility to handle cases that lie beyond the scope of the Chambolle-Pock algorithm. To il-
lustrate this point, let us consider an instance where Ωi =

{
x ∈ Rd : ∥x− pi∥∞ ≤ ai

}
, i = 1, · · · ,m.

The assumptions required for the Chambolle-Pock algorithm prevent us from addressing this case
(we have no choice but to impose ai = 0 in order to deal with translated norms) which can be
effectively handled by the mirror descent method.

Example 2.8.1. Let d = 2 and n = 7. Consider the points p1 = (4, 3)T , p2 = (2, 5)T , p3 = (4,−3)T ,
p4 = (1,−5)T , p5 = (7,−6)T , p6 = (6, 1)T and p7 = (3,−5)T a1 = 1, a2 = 2, a3 = 3, a4 = 0.5, a5 =
2, a6 = 1 and a7 = 1.
We will compare the results obtained using our mirror descent method with those achieved by both
the primal and dual splittings methods.

We run our MATLAB programs for various stepsizes ν > 0 as well as multiple parameters δ > 0
and the best performances are illustrated in Table 2.32 - Table 2.35.

MATLAB computed,

� via the primal parallel splitting algorithm, an optimal solution illustrated in Figure 2.7a given
by

x̄ = (2.7652,−0.8567)⊤ , t̄ = 3.8567,

while the optimal primal objective value is v(P) = 3.8567.

� via the mirror descent algorithm, an optimal solution illustrated in Figure 2.7b given by

x̄ = (2.7642,−0.8574)⊤ , t̄ = 3.8511,

while the optimal primal objective value is v(P) = 3.8511.

Algorithm Primal Dual Mirror descent (δ = 0.6127)
(ν = 24) (ν = 0.076) (ν = 0.05) (ν = 0.005)

Number of iterations 292 170 542 768
CPU time (seconds) 0.0913 0.0406 0.2162 0.2121
Objective value 3.8576 3.8555 3.8028 4.1137

Table 2.32: Comparison of splitting and mirror descent methods (d = 2, n = 7) for ϵ1 = 10−3

As demonstrated in the previous examples, unlike the splitting algorithms, the mirror descent
method does not achieve the exact objective value. To approach the exact objective value more
closely, the parameter ν must be reduced further. However, this adjustment leads to a significant
increase in both the number of iterations and CPU time. Consequently, although mirror descent
can improve the objective value, its overall efficiency is diminished compared to the primal and
dual splitting methods due to the higher computational costs associated with smaller values of ν.

A small ν can lead to a more precise approximation but requires more iterations and compu-
tational time, as seen in the results while a larger ν can ”expedite” convergence but at the cost

2.8. PERSPECTIVES ON FACILITY LOCATION OPTIMIZATION PROBLEMS 56

Algorithm Primal Dual Mirror descent (δ = 0.6127)
(ν = 24) (ν = 0.076) (ν = 0.05) (ν = 0.005)

Number of iterations 399 268 926 5372
CPU time (seconds) 0.1110 0.0497 0.2508 1.1448
Objective value 3.8568 3.8555 3.8005 3.8528

Table 2.33: Comparison of splitting and mirror descent methods (d = 2, n = 7) for ϵ2 = 10−4

Algorithm Primal Dual Mirror descent (δ = 0.6127)
(ν = 24) (ν = 0.076) (ν = 0.05) (ν = 0.005)

Number of iterations 627 459 1691 12911
CPU time (seconds) 0.1369 0.0523 0.4832 2.9053
Objective value 3.8567 3.8567 3.8004 3.8511

Table 2.34: Comparison of splitting and mirror descent methods (d = 2, n = 7) for ϵ3 = 10−6

Algorithm Primal Dual Mirror descent (δ = 0.6127)
(ν = 24) (ν = 0.076) (ν = 0.05) (ν = 0.005)

Number of iterations 857 652 2456 20434
CPU time (seconds) 0.1714 0.0807 0.6811 4.8432
Objective value 3.8567 3.8567 3.8004 3.8511

Table 2.35: Comparison of splitting and mirror descent methods (d = 2, n = 7) for ϵ4 = 10−8

of precision which may yield a solution that does not exactly correspond to the optimum of the
original objective function. Indeed, the smoothing technique introduces a bias in the objective
value to gain computational efficiency. The objective value obtained from mirror descent reflects
the minimum of the smoothed function, which is slightly different from the true minimum of the
original problem. This explains why this method does not lead the exact objective value seen with
the other methods, which do not rely on such smoothing and thus directly minimize the original
function.

From our conclusions, we infer that parallel splitting algorithms could serve as a middle ground,
balancing the computational efficiency of the Chambolle-Pock algorithm with the broader applica-
bility of the mirror descent method. With this in mind, the final phase of our internship focused
on adapting an inertial version of these parallel splitting methods to enhance their performance.

2.8.3 Perspectives related to the parallel splitting algorithms

We will introduce our parallel splitting algorithm which is based on [12] in the context of Special
case one 2.4.1, in which case, for i = 1, · · · , n, fi = γGi and the generalized minimal time function
T Ci
Ωi,γGi

appears in the objective.

Let Xi, for i = 1, · · · ,m, and Y be Hilbert spaces and let E be a closed linear subspace of Y .
Assume that, for every i = 1, · · · ,m, fi ∈ Γ0(Xi) and Li ∈ B(Y,Xi) is such that Li(E) is closed.

2.8. PERSPECTIVES ON FACILITY LOCATION OPTIMIZATION PROBLEMS 57

(a) Optimal solution via parallel splitting (b) Optimal solution via mirror descent

Figure 2.7: Visualization of an optimal solution to problem (d = 2, n = 7) via parallel splitting and
mirror descent methods

In [12], the authors considered the problem

min
y∈E

m∑
i=1

fi(Liy). (PL)

and proposed Algorithm 7 and proved a the convergence result given in Proposition 3.6.3.
For our numerical experiments, we will consider a particular instance of (PL).

min
y∈X

m∑
i=1

fi(y), (PId)

where, for every i = 1, · · · , n, fi ∈ Γ0(X).
In this instance, we opted for the following version of the inertial parallel splitting algorithm 7.

Algorithm 4 Inertial Parallel Splitting

1: Input: Choose (ti,0)1≤i≤m ∈ X, (pi,−1)1≤i≤m ∈ X, and constants ωi > 0, ϵi ∈ [0, 1[, λn ∈]0, 2[.
Set y0 =

1
m

∑m
i=1 ωiti,0.

2: for k ≥ 0 do
3: for i = 1, . . . , n do
4: pi,n ← prox(1−ϵi)fi/ωi

((1− ϵi)ti,n + ϵipi,n−1) + ai,n
5: cn ← 1

m

∑m
i=1 ωipi,n

6: end for
7: for i = 1, . . . , n do
8: ti,n+1 ← ti,n + λn (2cn − yn − pi,n)
9: end for

10: yn+1 ← yn + λn (cn − yn)
11: end for

In this context, Proposition 3.6.3 reformulates as follow.

2.8. PERSPECTIVES ON FACILITY LOCATION OPTIMIZATION PROBLEMS 58

Proposition 2.8.2. Let ϵ ∈ [0, 1[and λ ∈ R. Let {yk}k∈N ⊂ X, {ck}k∈N ⊂ X, {tk}k∈N ⊂ X, and
{pk}k≥−1 ⊂ X be generated by Algorithm 3.
Suppose that the following assumptions hold:

1. 0 ∈ sqri{(z − x1, . . . , z − xn) | z ∈ X, x1 ∈ domf1, . . . , xn ∈ domfn}.

2. λ ∈]0, 2[.

If the set of solutions to (PId) is nonempty, then (yk)n∈N, (ck)k∈N, and (pi,k)k∈N converge weakly
to ŷ where ŷ is a solution to (PId).

In the examples proposed in the previous section, the objective function involved T Ci
Ωi,δLi

, for

i = 1, · · · , n, as extended minimal time function while in this following two scenarios, the objective
function incorporates T Ci

Ωi,γGi
, for i = 1, · · · , n.

Example 2.8.3. Consider the case where d = 2 and n = 10, using the same set of points as in
Example 2.6.2. In Table 2.36 - Table 2.39, we compare the performance of the inertial version of the
parallel splitting algorithm with its non-inertial counterpart to evaluate potential improvements.

MATLAB computed, via the inertial parallel splitting method (as well as the non-inertial ver-
sion), an optimal solution given by

x̄ = (2.8333,−1.000)⊤ , t̄ = 6.000,

while the optimal primal objective value is v(P) = 6.000.

Algorithm Primal Inertial primal Dual Inertial dual
(ν = 6) (µ = 1, ϵ = 0.0001) (ν = 0.08) (µ = 1, ϵ = 0.0001)

Number of iterations 4667 3730 1180 3462
CPU time (seconds) 1.7894 1.3294 0.2520 0.6722
Objective value 5.9966 5.9968 5.9713 6.0234

Table 2.36: Comparison of primal and dual splittings methods with their inertial versions (d =
2, n = 3) for ϵ1 = 10−3

Algorithm Primal Inertial primal Dual Inertial dual
(ν = 6) (µ = 1, ϵ = 0.0001) (ν = 0.08) (µ = 1, ϵ = 0.0001)

Number of iterations 6723 5786 2716 5019
CPU time (seconds) 2.5164 2.0965 0.5432 1.1278
Objective value 6.0003 6.0003 6.0027 5.9977

Table 2.37: Comparison of primal and dual splittings methods with their inertial versions (d =
2, n = 10) for ϵ2 = 10−4

The inertial version of the primal algorithm shows a noticeable reduction in iterations. Specifi-
cally, it consistently converges with nearly 1, 000 fewer iterations across different error tolerances.
Additionally, this method demonstrates an improvement in computational time. For example, at
ϵ3 = 10−6, the inertial method reduces CPU time from 4.4539 to 3.8582 seconds. Although the
improvement might not be huge, it is indeed significant and suggests that inertia can accelerate

2.8. PERSPECTIVES ON FACILITY LOCATION OPTIMIZATION PROBLEMS 59

Algorithm Primal Inertial primal Dual Inertial dual
(ν = 6) (µ = 1, ϵ = 0.0001) (ν = 0.08) (µ = 1, ϵ = 0.0001)

Number of iterations 10816 9900 5828 8101
CPU time (seconds) 4.4539 3.8582 1.1569 1.8257
Objective value 6.0000 6.0000 6.0000 6.0000

Table 2.38: Comparison of primal and dual splittings methods with their inertial versions (d =
2, n = 10) for ϵ3 = 10−6

Algorithm Primal Inertial primal Dual Inertial dual
(ν = 6) (µ = 1, ϵ = 0.0001) (ν = 0.08) (µ = 1, ϵ = 0.0001)

Number of iterations 14929 14013 8941 11213
CPU time (seconds) 5.8706 5.8645 1.9910 2.6003
Objective value 6.0000 6.0000 6.0000 6.0000

Table 2.39: Comparison of primal and dual splittings methods with their inertial versions (d =
2, n = 10) for ϵ4 = 10−8

convergence both in terms of iterations and computational time.
However, in the dual setting, the introduction of inertia appears to have a negative impact. Regard-
less of the error tolerance, the inertial dual algorithm consistently requires more iterations and CPU
time to reach convergence. For instance, at the same accuracy ϵ3, the inertial method increases
CPU time from 1.1569 to 1.8257 second. Despite experimenting with various parameters and step
sizes, inertia seems to slow down the convergence in the dual case. This indicates that while inertia
can enhance performance in the primal algorithm, it may not provide the same benefits -and might
even hinder performance- in the dual algorithm.

We will examine whether this trend is consistent in the next example which involves more given
points.

Example 2.8.4.

Consider an example with n = 20 points. The points were generated using MATLAB’s rand
function, which produces uniformly distributed random numbers.

MATLAB computed,

� via the primal parallel splitting method, an optimal solution given by

x̄ = (0.2602, 0.4294)⊤ , t̄ = 1.9210,

while the optimal primal objective value is v(P) = 1.9210.

� via the inertial primal parallel splitting method, an optimal solution given by

x̄ = (0.2375, 0.4294)⊤ , t̄ = 1.9210,

while the optimal primal objective value is v(P) = 1.9210.

2.8. PERSPECTIVES ON FACILITY LOCATION OPTIMIZATION PROBLEMS 60

Algorithm Primal Inertial primal Dual Inertial dual
(ν = 6) (µ = 1, ϵ = 0.0001) (ν = 0.08) (µ = 1, ϵ = 0.0001)

Number of iterations 10601 7785 1955 7305
CPU time (seconds) 10.6118 7.7175 0.7852 3.5868
Objective value 1.9179 1.9242 1.9310 1.9063

Table 2.40: Comparison of primal and dual splittings methods with their inertial versions (d =
2, n = 20) for ϵ1 = 10−3

Algorithm Primal Inertial primal Dual Inertial dual
(ν = 6) (µ = 1, ϵ = 0.0001) (ν = 0.08) (µ = 1, ϵ = 0.0001)

Number of iterations 17860 15129 9523 13249
CPU time (seconds) 20.6331 17.1656 4.0129 6.7343
Objective value 1.9207 1.9207 1.9203 1.9225

Table 2.41: Comparison of primal and dual splittings methods with their inertial versions (d =
2, n = 20) for ϵ2 = 10−4

Algorithm Primal Inertial primal Dual Inertial dual
(ν = 6) (µ = 1, ϵ = 0.0001) (ν = 0.08) (µ = 1, ϵ = 0.0001)

Number of iterations 32504 29690 21301 24919
CPU time (seconds) 59.4297 50.3599 11.8184 20.2882
Objective value 1.9210 1.9210 1.9210 1.9210

Table 2.42: Comparison of primal and dual splittings methods with their inertial versions (d =
2, n = 20) for ϵ3 = 10−6

Algorithm Primal Inertial primal Dual Inertial dual
(ν = 6) (µ = 1, ϵ = 0.0001) (ν = 0.08) (µ = 1, ϵ = 0.0001)

Number of iterations 47147 44333 33080 36698
CPU time (seconds) 116.1680 113.1483 27.8191 40.6156
Objective value 1.9210 1.9210 1.9210 1.9210

Table 2.43: Comparison of primal and dual splittings methods with their inertial versions (d =
2, n = 20) for ϵ4 = 10−8

In this instance, the results presented in Table 2.40 - Table 2.43 confirm that introducing inertia
into the primal algorithm can lead to both faster convergence and reduced computational time.
Indeed, for ϵ4 = 10−8, the inertial primal algorithm requires fewer iterations (44, 333) compared
to the non-inertial primal version (47, 147) (a reduction of approximately 2, 800 iterations) while
demonstrating a slight improvement in computational time, reducing it from 113.1483 seconds to
116.1680 seconds. This suggests that inertia is effectively beneficial in improving the performance
of the primal splitting algorithm.
However, similarly to the previous example, regardless of the accuracy chosen, inertia negatively
impacts the dual algorithm’s performance. For instance, for ϵ3 = 10−6 accuracy the inertial dual

2.8. PERSPECTIVES ON FACILITY LOCATION OPTIMIZATION PROBLEMS 61

parallel splitting method increases both the number of iterations (from 21301 to 24919) and CPU
time (from 11.8184 to 20.2882 seconds).
The effect of inertia on splitting methods within our location problems appears to be mixed.
Although the initial primal version benefits from inertia, showing improved convergence speeds, the
dual version did not exhibit similar enhancements despite testing various step sizes and parameter
ranges. Further investigations may prove to be useful.

Chapter 3

Entropy and portfolio optimization

Portfolio optimization is a concept in finance consisting on the selection of the best allocation of
financial assets to achieve a desired return while managing risk. The objective is to maximize the
expected return of the portfolio for a given level of risk or to minimize risk for a given level of
expected return. In the 1950s, Harry Markowitz is the pioneer of modern portfolio optimization
for which he is awarded the 1990 Nobel Price of Economy.

3.1 Some elements on modern portfolio theory

Modern portfolio theory assumes that investors are risk averse, meaning that given two portfolios
that offer the same expected return, investors will prefer the less risky one. Thus, an investor will
take on increased risk only if compensated by higher expected returns. Conversely, an investor
who wants higher expected returns must accept more risk. The exact trade-off will be the same for
all investors, but different investors will evaluate the trade-off differently based on individual risk
aversion characteristics.
Two assets are considered uncorrelated if the returns of one asset do not predict the returns of the
other. In statistical terms, the correlation coefficient between their returns is zero. Investing in
uncorrelated assets can significantly reduce portfolio risk as the performance of one asset does not
affect the performance of the other. By combining uncorrelated assets, the overall volatility of the
portfolio can be reduced without necessarily sacrificing expected returns.
Two assets are negatively correlated if the returns of one asset tend to move in the opposite direction
to the returns of the other. In statistical terms, the correlation coefficient between their returns
is less than zero, often significantly so (close to −1). Investing in negatively correlated assets can
provide a natural hedge against market volatility. When one asset loses value, the other tends
to gain value, therefore offsetting the loss. Combining negatively correlated assets can lead to a
portfolio with much lower overall volatility, as the opposing movements of the assets smooth out
the volatility.
The modern portfolio theory is used to diversify a portfolio in order to get a better return overall
without a bigger risk. Another benefit of this theory is that it can reduce volatility. The best way
to do that is to choose assets that have a negative correlation. Ultimately, the goal of the modern
portfolio theory is to create the most efficient portfolio possible.
A risk measure is a tool that helps us understand how risky a financial situation is. In simple terms,
it does this by giving us numbers that show how likely and how severe potential losses could be.
During our investigations, inspired by the work presented in [3] we concentrated on a particular
risk measure. The following section will outline general properties of risk measures and define

62

3.2. RISK MEASURES AND PORTFOLIO OPTIMIZATION 63

specifically the ones we covered in the context of portfolio optimization.

3.2 Risk measures and Portfolio Optimization

3.2.1 Risk measures and EVaR

A risk measure is a function ρ that assigns a real value to a random variableX in order to quantify its
risk degree. To precisely define the concept of a risk measure, consider a probability space (Ω,F,P)
where Ω is a set of all simple events, F is a σ-algebra of subsets of Ω, and P is a probability
measure on F. Also, let L0(Ω,F,P) be the set of all Borel measurable functions (random variables)
X : Ω → R, and let X ⊆ L0 be the model space, which is a subspace including all real numbers
(constant functions). Then, a risk measure is defined as ρ : L0(Ω,F,P)→ R̄.
The literature introduces several properties for a suitable risk measure. The following may be the
most important properties for the risk measure ρ.

1. Translation invariance: ρ(X + c) = ρ(X) + c for any X ∈ X and c ∈ R.

2. Subadditivity: ρ(X + Y) ≤ ρ(X) + ρ(Y) for all X,Y ∈ X.

3. Monotonicity: if X ≤ Y and X,Y ∈ X, then ρ(X) ≤ ρ(Y).

4. Positive Homogeneity: ρ(λX) = λρ(X) for all X ∈ X and λ ≥ 0.

A risk measure is called coherent if it satisfies properties 1-4.
In finance, X often represents a gain or profit, and thus a risk measure is called coherent if the

functional ψ(X) = ρ(−X) satisfies the above four properties. For definitions and comparisons of
various risk measures, we refer [3]. We will focus in the subsequent sections on one specific risk
measure which is the entropic value-at risk.

The entropic value-at-risk (EVaR) is a new coherent risk measure introduced in [2], which is
an upper bound for both the value-at-risk (VaR) and conditional value-at-risk (CVaR). For more
details regarding risk measures, we refer to [2] and [3].
The EVaR at risk level α is defined as

EVaR1−α(X) := inf
θ>0

{
1

θ
ln

(
E
(
eθX

)
α

)}
, ∀X ∈ LM , ∀α ∈ (0, 1], (3.1)

where LM stands for the set of all random variables X whose moment-generating function E
(
eθX

)
is finite for all θ ∈ R. The EVaR is strongly monotone over its domain and strictly monotone over a
broad sub-domain including all continuous distributions. A key feature for a risk measure, besides
its financial properties, is its applicability in large-scale sample-based portfolio optimization.

3.2.2 Portfolio Optimization with EVaR

Let w ∈ Rn, n ≥ 1, denote a portfolio vector indicating the fraction of investment of some available
budget (assumed to equal 1) in each one of the n financial instruments. Let R ∈ Rk be a ran-
dom vector with a known probability distribution, representing risk factors required to specify the
portfolio return. The random vector R is modeled over the underlying probability space (Ω,F,P).
The loss of the portfolio (the negative return) is also a random variable denoted by G(w,R), which

3.3. PORTFOLIO OPTIMIZATION VIA SPLITTING 64

depends on the vector of risk factors R and portfolio vector w. Assuming that no short positions
are allowed, an optimal portfolio can be determined by solving the following optimization problem:

min
w≥0,

wT1=1,
w∈D

ρ(G(w,R)) (PR)

where ρ is a risk measure, representing the risk of the portfolio w, and D is a compact set,
representing user-specified requirements.
To have a well-defined problem, for all w ∈ D, it is required to assume that G(w,R) is a Borel
measurable function and that the objective function in (PR) is finite. The random variable G(w,R)
always lies in the model space considered for the risk measure ρ.
In [3], the authors proved that the objective function of (PR) is convex if the risk measure ρ is
coherent and G(., s) is convex for all s ∈ supp(R), where supp(R) denotes the support of the
random vector R so that (PR) is a convex optimization problem.
We denote the samples from the random vector R by aj = (aj1, · · · , a

j
k)

T , with probability pj , j =
1, · · · , N , where N is the sample size. This setting is called in [3] sample-based setting and will be
considered in the following. In most practical cases, we have pj =

1
N , j = 1, · · · , N .

Under this sample-based setting, if we replace in (PR) the generic risk measure ρ by the EVaR
(3.1), we obtain the following optimization problem

min
w≥0,

wT1=1,
w∈D

inf
θ>0

{
1

θ
ln

(
E
(
eθ(G(w,R))

)
α

)}

or equivalently setting t = 1
θ and rewriting the expectation

min
w≥0,t>0,
wT1=1,
w∈D

t ln
 N∑

j=1

pj

(
e

1
t
(G(w,aj))

)− t lnα
 . (PEV aR)

Our purpose is to solve portfolio optimization problems where the risk is modelled by EVaR
via parallel splitting methods. Indeed, in [11], the authors showed that (PEV aR) corresponds in
fact to the Lagrange-dual problem of some generalization of a primal entropy constrained linear
optimization problem treated by [7].

3.3 Portfolio optimization via splitting

Let us first recall that for any subset A of a Hilbert space X, its stands that δ∗A = σA and ∂δA = NA

and precise that much of this section is based on the theoretical results in [4]. We will first formulate
the general primal constrained optimization whose dual models the EVaR portfolio optimization
problem. Then we will consider a particular instance which slightly generalizes the one given in [4].

3.3.1 General case

Let us consider the following entropy constrained optimization problem

inf
x∈Rm

+ , y∈Rd, Apx+By≤h,∑m
j=1 pjxj=1,

∑m
j=1 pjxj lnxj≤−H

{
cTp x+ σD(y)

}
, (P)

3.3. PORTFOLIO OPTIMIZATION VIA SPLITTING 65

where

x = (x1, · · · , xm)T ∈ Rm, y = (y1, · · · , yd)T ∈ Rd

0 < pj < 1, j = 1, · · · ,m, c = (c1, · · · , cm)T ∈ Rm, cp = (c1p1, · · · , cmpm)T ∈ Rm

A = (aij)
n,m
i,j=1 ∈ Rn×m, Ap = (aijpj)

n,m
i,j=1 ∈ Rn×m, B = (bij)

n,d
i,j=1 ∈ Rn×d,

h = (h1, · · · , hn)T ∈ Rn, H ∈ R,

(3.2)

are given and D ⊆ Rd is a nonempty closed convex set.
To guarantee continuity at the origin, we use the convention 0 ln 0 = 0.

Remark 33. In [4], the authors showed the following facts.

� If H > ln
(∑m

j=1 pj

)
, then the feasible set of (P) is empty.

� If H = ln
(∑m

j=1 pj

)
, the optimal solution to (P) is given by x̄j = ln

(∑m
j=1 pj

)
, j = 1, · · · ,m

while (P) reduces to the convex optimization problem

cTp x̄+ inf
y∈Rd, Apx+By≤h,

{σD(y)} (3.3)

which can be solved via proximal splitting using conjugate duality.

� Using Kullback-Leibler entropy the minimal value of
∑m

j=1 pjxj lnxj , subject to the constraints∑m
j=1 pjxj = 1, and xj ≥ 0, j = 1, · · · ,m , is given by min {ln p1, · · · , ln pm} and is attained

when xl =
1
pl

with pl = min {p1, · · · , pm} and xj = 0, j = 1, · · · ,m, j ̸= l. In that case, (P)
becomes a convex optimization problem similar to the one appearing in (3.3).

To exclude trivial cases presented in the previous remark, we assume that

min {ln p1, · · · , ln pm} < H < ln

 m∑
j=1

pj

 . (3.4)

For any y ∈ Rd, the set defined by

Sy =

x ∈ Rm
+ , Apx+By ≤ h,

m∑
j=1

pjxj = 1,
m∑
j=1

pjxj lnxj ≤ −H

 (3.5)

is closed, convex and bounded, so that by Weierstrass theorem, the infimum in (P) is attained for
any y ∈ Rd.

By introducing dual variables corresponding to the constraints, the Lagrange dual formulation
of(P) is expressed as

sup
λ∈Rn

+, γ∈R, β∈R+

inf
x∈Rm

+ , y∈Rd

{
cTp x+ σD(y)

+ λT (Apx+By − h) + γ

 m∑
j=1

pjxj − 1

+ β

 m∑
j=1

pjxj lnxj +H

} (DL)

3.3. PORTFOLIO OPTIMIZATION VIA SPLITTING 66

Remark 34. In order to present a simplified formulation of (DL), we use the following observations
made in [4].

� infy∈Rd

{
λTBy + σD(y)

}
= −σ∗D(−BTλ) = −δD(−BTλ).

� Let v > 0, w ∈ R. Considering the function ϕ : R+ → R defined by ϕ(x) := vx lnx + wx, ϕ

attains its minimum at x = e−
v+w
v and the associated minimal value is ϕ(e−

v+w
v) = −ve−

v+w
v .

� Let w, β > 0, k ∈ R. Considering the function ψ : R→ R defined by ψ(γ) := −βwe−
γ
β −γ+k,

ψ attains its maximum at γ = β lnw and the associated maximal value is ϕ(β lnw) = k −
β ln(ew).

Taking into account the abovementioned arguments, the dual problem (DL) associated to the
primal problem (P) rewrites

sup
β>0, λ≥0
−BTλ∈D

−βln
 m∑

j=1

pj exp
−

λTAj+cj
β

+ βH

 . (D′
L)

Remark 35. We observe similarities between the formulations (D′
L) and (PEV aR). Indeed, it suffices

to let H = lnα and to specify an appropriate matrix B (D′
L) while choosing accordingly G(w,R)

in (PEV aR).

Weak duality always holds between the primal problem (P) and its dual counterpart (D′
L).

Indeed, the optimal objective value of the primal problem is always greater than or equal to the
optimal objective value of the dual problem, v(P)≥ v(D′

L). To attain strong duality -in which
case the previous inequality becomes an equality- a necessary condition is to have a constraint
qualification -which is a refinement of Slater’s condition- fulfilled. We give the result as stated in
[4].

Theorem 3.3.1. Assume that the constrained qualification

∃(x, y) ∈ ri
(
Rm
+ × domσD

)
: Apx+By ≤ h,

m∑
j=1

pjxj = 1,
m∑
j=1

pjxj lnxj < −H, (3.6)

is fulfilled, then strong duality holds between the (P) and (D′
L), v(P)= v(D′

L) and the dual problem
has an optimal solution (β̄, λ̄) ∈ R+ × Rn

+.

The following result states the necessary and sufficient optimality conditions given in [4].

Theorem 3.3.2. 1. Asssume that the constraint qualification (3.6) is fulfilled and let (x̄, ȳ) ∈
Rm
+ × Rd be an optimal solution to (P). Then there exists (β̄, λ̄) ∈ R+ × Rn

+, an optimal
solution to (D′

L), such that

c⊤p x̄+ σD(ȳ) = −β̄ ln

 m∑
j=1

pje
−

λ̄⊤Aj+cj
β̄

+ β̄H − λ̄⊤h

= min
x̄∈Rm

+ ,
ȳ∈Rn

c⊤p x̄+ σD(ȳ) + λ̄⊤(Apx̄+Bȳ − h) + γ

 m∑
j=1

pj x̄j − 1

+ β̄

 m∑
j=1

pj x̄j ln x̄j +H

 ,

(i)

3.3. PORTFOLIO OPTIMIZATION VIA SPLITTING 67

σD(ȳ) = −λ̄⊤Bȳ, (ii)

λ̄⊤(Apx̄+Bȳ − h) = 0, (iii)
m∑
j=1

pj x̄j ln x̄j = −H, (iv)

β̄
m∑
j=1

pj x̄j ln x̄j + β̄ ln

 m∑
j=1

pje
−

λ̄⊤Aj+cj
β̄

 = −c⊤p x̄− λ̄⊤Apx̄, (v)

λ̄i ≥ 0, i = 1, . . . , n, β̄ > 0, −B⊤λ̄ ∈ D,
m∑
j=1

pj x̄j = 1. (vi)

2. Conversely, if there exists (x̄, ȳ) ∈ Rm
+×Rd such that for some (β̄, λ̄) ∈ R+×Rn

+ the condtions
(i)-(vi) are fulfilled, then (x̄, ȳ) is an optimal solution to (P), (β̄, λ̄) is an optimal solution to
(D′

L) and v(P)= v(D′
L).

Building on the authors’ work on their specific case, we propose a method for the general case
that exploits optimality conditions to recover an optimal dual solution from an optimal primal
solution, and vice versa. We will then adapt it to our special case.

Proposition 3.3.3. 1. Asssume that the constraint qualification (3.6) is fulfilled and let (x̄, ȳ) ∈
Rm
+ ×Rd be an optimal solution to (P). Then, an optimal solution (β̄, λ̄) to (D′

L) is solution
to the constrained linear system

∑n
i=1 λ̄i (aij − hi) + β̄ (ln x̄j +H) = v(P)− cj , j = 1, · · · ,m

−λ̄TB ∈ ∂σD(ȳ),
λ ∈ D ∩ Rn

+

β > 0.

(S1)

2. Conversely, if (β̄, λ̄) is an optimal solution to (D′
L), then an optimal solution (x̄, ȳ) to(P) can

be determined by solving the constrained linear system
x̄j = exp

(
1
β̄

(
v(D)− cj −

∑n
i=1 λ̄i (aij − hi)

)
−H

)
, j = 1, · · · ,m∑m

i=1 pjcjxj +
∑n

i=1

(∑m
i=1 λ̄ipjaijxj − hi

)
= v(D),

ȳ ∈ ND(−λ̄TB).

(S2)

Proof. Suppose that (x̄, ȳ) is an optimal solution to (P). Using the second equality of optimality
condition (i) in the previous theorem, we obtain the following optimality conditions.{

−λ̄TB ∈ ∂σD(ȳ),
pjcj +

∑n
i=1 λ̄ipjaij + γ̄pj + β̄pj (ln x̄j + 1) = 0, j = 1, · · · ,m.

(3.7)

Multiplying the equality in (3.7) by x̄j and taking the sum over j = 1, · · · ,m, we get

m∑
i=1

pjcj x̄j +

m∑
i=1

n∑
i=1

λ̄ipjaij x̄j + γ̄

m∑
i=1

pj x̄j + β̄

m∑
i=1

pj x̄j (ln x̄j + 1) = 0. (3.8)

3.3. PORTFOLIO OPTIMIZATION VIA SPLITTING 68

From feasibility and in particular as
∑m

j=1 pj x̄j = 1, equation (3.8) rewrites

m∑
i=1

pjcj x̄j +

m∑
i=1

n∑
i=1

λ̄ipjaij x̄j + γ̄ + β̄

m∑
i=1

pj x̄j (ln x̄j + 1) = 0

which yields by optimality condition (iv)

m∑
i=1

pjcj x̄j +

m∑
i=1

n∑
i=1

λ̄ipjaij x̄j + γ̄ − β̄ (H − 1) = 0. (3.9)

From optimality condition (ii), we deduce that

v(P) = c⊤p x̄− λ̄⊤Bȳ = c⊤p x̄+ λ̄⊤(Apx̄− h) =
m∑
i=1

pjcj x̄j +
n∑

i=1

λ̄i

(
m∑
i=1

pjaij x̄j − hi

)
.

so that equation (3.9) rewrites

v(P) + λ̄⊤h+ γ̄ − β̄ (H − 1) = 0.

leading to
γ̄ = −v(P)− λ̄⊤h− β̄ (1−H) . (3.10)

Combining expression (3.10) with optimality condition (ii), we deduce that

pjcj +
n∑

i=1

λ̄ipjaij + pj

(
−v(P)−

n∑
i=1

λ̄ihi − β̄ (1−H)

)
+ β̄pj (ln x̄j + 1) = 0, j = 1, · · · ,m

or equivalently

n∑
i=1

λ̄i (aij − hi) + β̄ (ln x̄j +H) = v(P)− cj , j = 1, · · · ,m. (3.11)

Finally, by the first condition in (3.7) and (3.11), an optimal solution (β̄, λ̄) to (D′
L) is solution to

the linear system

n∑
i=1

λ̄i (aij − hi) + β̄ (ln x̄j +H) = v(P)− cj , j = 1, · · · ,m

supplemented by the constraints

−λ̄TB ∈ ∂σD(ȳ), λ ∈ D ∩ Rn
+ β > 0.

Conversely, if (β̄, λ̄) is an optimal solution to (D′
L), then, using optimality conditions (i)-(vi),

an optimal solution (x̄, ȳ) to (P) can be determined. Indeed, (3.11) yields

ln x̄j =
1

β̄

(
v(P)− cj −

n∑
i=1

λ̄i (aij − hi)

)
−H, j = 1, · · · ,m. (3.12)

We deduce from strong duality v(P)= v(D′
L) and (3.12) that x̄ satisfies

x̄j = exp

(
1

β̄

(
v(D)− cj −

n∑
i=1

λ̄i (aij − hi)

)
−H

)
, j = 1, · · · ,m (3.13)

3.3. PORTFOLIO OPTIMIZATION VIA SPLITTING 69

where the dual objective value is

v(D) =
m∑
i=1

pjcj x̄j + σD(ȳ). (3.14)

Using optimality conditions (ii)-(iii), one has

σD(ȳ) = −λ̄⊤Bȳ = λ̄⊤(Apx̄− h). (3.15)

From (3.12)-(3.15), we deduce that x̄ can be found by solving the linear system{
x̄j = exp

(
1
β̄

(
v(D)− cj −

∑n
i=1 λ̄i (aij − hi)

)
−H

)
, j = 1, · · · ,m∑m

i=1 pjcjxj +
∑n

i=1 λ̄i (
∑m

i=1 pjaijxj − hi) = v(D).

Finally, using −λ̄TB ∈ ∂σD(ȳ) and Theorem 1.1.13, ȳ can be determined by

ȳ ∈ ∂δD(−λ̄TB) = ND(−λ̄TB).

Remark 36. Next, we will demonstrate that the optimality condition involving the matrix B and
the subdifferential of the support function of D simplifies when an appropriately chosen matrix B
is used in our specific case. This choice will be crucial for presenting our numerical applications.

3.3.2 Special case

Let us consider a particular instance of our general entropy optimization problem (P) by taking

d = n+ 1, D = D̃ × {1} ∈ Rn+1 with D̃ ⊆ Rn and B = −

 1

B̃
...
1

 ∈ Rn×n+1 with B̃ ∈ Rn×n.

Remark 37. While, in [4], the authors imposed c = 0, h = 0 and B̃ = Id, we consider, in the
following, general vectors h and c along with a generic matrix B̃. For the numerical tests and to
simplify the resolution -especially the optimality conditions-, we will later set B̃ = Id.

Letting y = (ỹ, yn+1), the primal entropy constrained optimization problem (P) transforms into

inf
x∈Rm

+ , ỹ∈Rn, yn+1∈R,∑m
j=1 pjaijxj−

∑n
j=1 bijyi−hi≤yn+1, i=1,··· ,n,∑m

j=1 pjxj=1,
∑m

j=1 pjxj lnxj≤−H

{
cTp x+ σD̃×{1}(ỹ, yn+1)

}
(3.16)

which rewrites, setting t := yn+1 and y := ỹ

inf
x∈Rm

+ , y∈Rn, t∈R,∑m
j=1 pjaijxj−

∑n
j=1 bijyi−hi≤t, i=1,··· ,n,∑m

j=1 pjxj=1,
∑m

j=1 pjxj lnxj≤−H

{
cTp x+ t+ σD̃(y)

}
. (Ps)

Remark 38. A connection to the previous chapter can be established as (Ps) can be seen as a
minimax problem

inf
x∈Rm

+ , y∈Rn,∑m
j=1 pjxj=1,

∑m
j=1 pjxj lnxj≤−H

max
1≤i≤n

m∑
j=1

pjaijxj −
n∑

j=1

bijyi − hi

+ cTp x+ σD̃(y)

 .

3.3. PORTFOLIO OPTIMIZATION VIA SPLITTING 70

The Lagrange dual problem of (Ps) is given by

sup
λ∈Rn

+, γ∈R, β∈R+

inf
x∈Rm

+ , y∈Rn,t∈R

{
cTp x+ t+ σD(y)

+
n∑

i=1

λi

 m∑
j=1

pjaijxj −
n∑

j=1

bijyi − hi − t

+ γ

 m∑
j=1

pjxj − 1

+ β

 m∑
j=1

pjxj lnxj +H

},
(Ds)

As D = D̃×{1}, we observe that the constraint −BTλ ∈ D of (D′
L) is reformulated in our specific

instance as two constraints

B̃Tλ ∈ D̃,
n∑

i=1

λi = 1.

Therefore, the dual problem of (Ps) is given by

sup
β>0, λi≥0, i=1,··· ,n
B̃Tλ∈D̃,

∑n
i=1 λi=1

−βln
 m∑

j=1

pj exp
−

λTAj+cj
β

+ βH − λTh

 . (D′
s)

Remark 39. We can see the importance of imposing the appropriate constraint involving the dual
variable λ. Specifically, choosing an apppropriate matrix B yields the constraint

∑n
i=1 λi = 1

which ensures that the asset allocation of the financial instruments equals the total budget, which
is assumed to be normalized. This demonstrates that the dual problem (D′

s) is in fact modeling
our EVaR optimization problem.

Weak duality always holds. To have strong duality, we suppose the fulfillement of a qualification
condition.

Theorem 3.3.4. Assume the constrained qualification

∃(x, y, t) ∈ ri
(
Rm
+ × domσD̃ × R

)
: Apx− B̃y − t ≤ h,

m∑
j=1

pjxj = 1,
m∑
j=1

pjxj lnxj < −H,

(3.17)
is fulfilled, then strong duality holds between (Ps) and (D′

s), v(Ps)= v(D′
s) and the dual problem

(D′
s) has an optimal solution (β̄, λ̄) ∈ R+ × Rn

+.

Proof. It is a direct consequence of Theorem 3.3.1. It suffices to observe that in this case, domσD =
domσD̃×{1} = domσD̃ × R and Apx+By − h =

∑m
j=1 pjaijxj −

∑n
j=1 bijyi − t.

The following result states the necessary and sufficient optimality conditions in the context our
our specific case.

Theorem 3.3.5. 1. Assume that the constraint qualification (3.17) is fulfilled and let (x̄, ȳ, t̄) ∈
Rm
+ ×Rn×R be an optimal solution to (Ps). Then there exists (β̄, λ̄) ∈ R+×Rn

+, an optimal
solution to (D′

s) such that

cTp x+ t̄+ σD(ȳ) = −β̄ ln

 m∑
j=1

pje
−

λ̄⊤Aj+cj
β̄

+ β̄H − λTh

= min
x̄∈Rm

+ ,

ȳ∈Rd,
t̄∈R

cTp x̄+ t̄+ σD̃(ȳ) + λ̄⊤
(
Apx̄− B̃ȳ − t− h

)
+ γ

 m∑
j=1

pj x̄j − 1

+ β̄

 m∑
j=1

pj x̄j ln x̄j +H

 ,

(i)

3.3. PORTFOLIO OPTIMIZATION VIA SPLITTING 71

σD̃(ȳ) = λ̄⊤B̃ȳ, (ii)

λ̄⊤
(
Apx+ B̃ȳ − t− h

)
= 0, (iii)

m∑
j=1

pj x̄j ln x̄j = −H, (iv)

β̄
m∑
j=1

pj x̄j ln x̄j + β̄ ln

 m∑
j=1

pje
−

λ̄⊤Aj+cj
β̄

 = −cTp x− λ̄⊤Apx̄, (v)

λ̄i ≥ 0, i = 1, . . . , n, β̄ > 0, B̃T λ̄ ∈ D̃,
n∑

i=1

λ̄i = 1,
m∑
j=1

pj x̄j = 1, (vi)

t̄ = max
1≤i≤n

m∑
j=1

pjaij x̄j −
n∑

j=1

bij ȳi − hi

 . (vii)

2. Conversely, if there exists (x̄, ȳ, t̄) ∈ Rm
+ × Rn × R such that for some (β̄, λ̄) ∈ R+ × Rn

+

the conditions (i)-(vii) are fulfilled, then (x̄, ȳ, t̄) is an optimal solution to (Ps), (β̄, λ̄) is an
optimal solution to (D′

s) and v(Ps)= v(Ps).

Proof. It is a direct consequence of Theorem 3.3.2. Optimality conditions (i)-(vi) are straightfor-
ward. The condition (vii) yields from condition (vi) and the feasiblilty constraint related to the
dual variable λ. Indeed, we can write

n∑
i=1

λ̄i

 m∑
j=1

pjaij x̄j −
n∑

j=1

bij ȳi − hi

 = t̄

n∑
i=1

λ̄i

=t̄ ≥ max
1≤i≤n

m∑
j=1

pjaij x̄j −
n∑

j=1

bij ȳi − hi

=

n∑
i=1

λ̄i max
1≤i≤n

m∑
j=1

pjaij x̄j −
n∑

j=1

bij ȳi − hi

 ≥
n∑

i=1

λ̄i

 m∑
j=1

pjaij x̄j −
n∑

j=1

bij ȳi − hi

 .

(3.18)

We deduce that inequalities in (3.18) are in fact equalities which yields optimality condition (vii).

We propose now a characterization of the optimal dual solution from the optimal primal solution
and vice-versa which is analogous to Proposition 3.3.3.

Proposition 3.3.6. 1. Assume that the constraint qualification (3.17) is fulfilled and let (x̄, ȳ, t̄) ∈
Rm
+ × Rn × R be an optimal solution to (Ps). Then, an optimal solution (β̄, λ̄) to (D′

s) is
solution to the constrained linear system

∑n
i=1 λ̄i (aij − hi) + β̄ (ln x̄j +H) = v(P)− cj , j = 1, · · · ,m∑n
i=1 λ̄i = 1, B̃T λ̄ ∈ ∂σD̃(ȳ),

λ ∈ D̃ ∩ Rn
+

β > 0.

(S3)

3.3. PORTFOLIO OPTIMIZATION VIA SPLITTING 72

2. Conversely, if (β̄, λ̄) is an optimal solution to (D′
s), then, using the optimality conditions, an

optimal solution (x̄, ȳ, t̄) ∈ Rm
+ ×Rn×R to (Ps) can be determined by solving the constrained

linear system

x̄j = exp
(

1
β̄

(
v(D)− cj −

∑n
i=1 λ̄i (aij − hi)

)
−H

)
, j = 1, · · · ,m∑m

i=1 pjcjxj +
∑n

i=1 λ̄i

(∑m
j=1 pjaij x̄j − hi

)
= v(D),

ȳ ∈ ND̃(B̃
T λ̄),

t̄ =
∑n

i=1 λ̄i

(∑m
j=1 pjaij x̄j −

∑n
j=1 bij ȳi − hi

)
.

(S4)

Before delving into the numerical analysis, let us review the formulations of the problems
considered in [3] and in [4].

� In [3], the authors considered the problem

min
w≥0,t>0,
wT1=1,
w∈D

t ln
 N∑

j=1

pj

(
e

1
t
(G(w,aj))

)− t lnα
 ,

and solved it by a primal-dual interior point method

� In [4], the authors considered the problem

sup
β>0, λi≥0, i=1,··· ,n
B̃Tλ∈D̃,

∑n
i=1 λi=1

−βln
 m∑

j=1

pj exp
−

λTAj+cj
β

+ βH − λTh

 .

and solved it by a parallel splitting algorithm.

In [3], the authors considered the linear case given by G(w,aj) = −(aj)Tw. In order to treat
our case (which is slightly more general), let us set G(w,aj) = −(aj)Tw+ hTw+ cj where h ∈ Rn

is given and corresponds to the right hand side term in the linear constraint of the primal entropy
constrained optimization problem while cj is a random value for j = 1, · · · , N and stands for the
vector c ∈ Rm that appears in the objective function of (Ps). Note that, in this case, the function
G(.,aj) is still convex in w so that the problem remains convex.

Remark 40. We should precise that assimilating the two problems, we remark that regarding the
dimensions, m = N and n = k and regarding the variables β = t and λ = w. We will see later
that this observation has numerical ramifications. We choose to adopt -temporarily- the notations
presented in [4].
It is worth mentioning that we imposed that the number of risk factors equals the number of
financial instruments (k = n). This setup -which simplifies the modeling- will enable us to achieve
the application of a suitable splitting method.

We rewrite the primal problem (Ps) by means of indicator functions (encoding the constraints)
in order to get an unconstrained optimization problem. For that purpose, we introduce additional
variables τj , j = 1, · · · ,m which handle the entropy constraints.
Indeed, the constraint

m∑
j=1

pjxj lnxj ≤ −H

3.4. NUMERICAL EXPERIMENTS 73

will transform into the m+ 1 constraints

pjxj lnxj ≤ τj , j = 1, · · · ,m,
m∑
j=1

τj ≤ −H.

(Ps) rewrites then

inf
x∈Rm, τ∈Rm,
y∈Rn, t∈R,

cTp x+ t+ σD̃(y) + δC1(x, y, t) + δC2(x) + δC3(τ) +
m∑
j=1

δepihj
(xj , τj)

 , (3.19)

where we have defined the sets

C1 =
{
(x, y, t) ∈ Rm × Rn × R : Apx+ B̃y − t ≤ h

}
,

C2 =

x ∈ Rm
+ :

m∑
j=1

pjxj = 1

 ,

C3 =

τ ∈ Rm :
m∑
j=1

τj ≤ −H

 ,

and we introduced the function

hj : R→ R, hj(x) =

pjx lnx, if x > 0,

0, if x = 0,

+∞, if x < 0,

for j = 1, . . . ,m.

In order to employ a proximal splitting method for solving (Ps), we need closed formulae for
the projection operators onto the sets C1, C2, and C3, as well as projection operators onto the
epigraphs of the functions hj , j = 1, . . . ,m. To this end, we will use Theorem 3.6.6, Corollary
3.6.7, Proposition 3.6.8 and Proposition 3.6.9 which are formulated in the appendix.

3.4 Numerical Experiments

In this section, we will compare the results obtained by the Douglas Rachford parallel splitting
algorithm provided in 3.6.2 and the primal dual interior point algorithm used in [3, Section 4.2].
We assess the efficiency of our proposed parallel splitting algorithm in the framework of our entropy
portfolio optimization problem.

Remark 41. It is important to note that the objective value of the optimization problem (PEV aR)
when solved using the primal-dual interior point (PDIP) method, is equal to the negative of the
objective value of the dual problem (D′

s), solved using the parallel splitting (PS) algorithm. To
clarify these results, we provide in the following tables the opposite of the objective values of
(PEV aR) obtained by the PDIP method and the dual objective values of (D′

s) obtained from the
PS method.

As in the previous chapter, we choose as stopping criterion the values ϵ1 = 10−3, ϵ2 = 10−4,
ϵ3 = 10−6 and ϵ4 = 10−8 where for i = 1, 2, 3, 4, ϵi stands for the maximum bounds between the
solutions given by two consecutive iterations. The origin was taken as the starting point.

We will present our investigations in finitely dimensional spaces. Specifically, we set X = Rd.

3.4. NUMERICAL EXPERIMENTS 74

Algorithm PS(µ = 1.65, ν = 1.4) PDIP

Number of iterations 646 351
CPU time (seconds) 1.0744 3.580059
Objective value 2.299084 2.296731

Table 3.1: Comparison of splitting and primal-dual interior point methods (n = 10,m = 10) for
ϵ1 = 10−3

Algorithm PS(µ = 1.65, ν = 1.4) PDIP

Number of iterations 924 352
CPU time (seconds) 1.3984 3.785709
Objective value 2.297589 2.296807

Table 3.2: Comparison of splitting and primal-dual interior point methods (n = 10,m = 10) for
ϵ2 = 10−4

Algorithm PS(µ = 1.65, ν = 1.4) PDIP

Number of iterations 1369 354
CPU time (seconds) 2.2137 4.394282
Objective value 2.296820 2.296826

Table 3.3: Comparison of splitting and primal-dual interior point methods (n = 10,m = 10) for
ϵ3 = 10−6

Algorithm PS(µ = 1.65, ν = 1.4) PDIP

Number of iterations 1939 357
CPU time (seconds) 2.9496 4.421544
Objective value 2.296827 2.296827

Table 3.4: Comparison of splitting and primal-dual interior point methods (n = 10,m = 10) for
ϵ4 = 10−8

Example 3.4.1. We first consider an example where n = m = 10.
We run our MATLAB programs for various stepsizes ν and parameters µ. The best performances
of our tests are illustrated in Table 3.1 - Table 3.4.

MATLAB computed, via parallel splitting, an optimal solution given by

x̄ = (0.9463, 0.9369, 1.3343, 3.3603, 0.0500, 0.8699, 0.0675, 0.5003, 0.1664, 1.7321)⊤ ,

τ̄ = (−0.0011,−0.0099, 0.0415, 0.4953,−0.0286,−0.0029,−0.0155,−0.0389,−0.0227, 0.0937)⊤ ,
t̄ = 4.7414.

We can deduce the value for y considering the choice of the set D. Indeed as D = Rn, since the
term σD(y) appears in the objective function, we have ȳ = 0R10 .
Regarding the concrete stake, we want to find the optimal asset allocation λ̄ denoted w in [3].

3.4. NUMERICAL EXPERIMENTS 75

(a) Objective value via primal-dual interior point (b) Objective value via parallel splitting

Figure 3.1: Convergence of the objective value of problem (n = 10,m = 10) via parallel splitting
and primal-dual interior point methods

(a) Optimal solution via primal-dual interior
point (b) Optimal solution via parallel splitting

Figure 3.2: Convergence of the optimal solution of problem (n = 10,m = 10) via parallel splitting
and primal-dual interior point methods

By solving linear system (S3), MATLAB finds β̄ = 3.6973 and mainly

λ̄ = (0.0000, 0.0516, 0.0000, 0.5575, 0.0000, 0.0000, 0.0000, 0.0000, 0.3909, 0.0000)⊤

while the optimal primal objective value is v(P) = 2.296827.
Although the primal-dual interior point method requires fewer iterations, the parallel splitting

method demonstrated faster computational times for all error tolerances. For instance, our parallel
algorithm converged three times faster than the primal-dual interior point method at ϵ1 = 10−3

(1.0744 compared to 3.580059 seconds) and almost twice as fast at ϵ3 = 10−6 (2.2137 compared to
4.394282 seconds) while both methods achieved comparable objective values.
The convergence of both the objective function and optimal solution are respectively illustrated in
Figure 3.1 and Figure 3.2.

Example 3.4.2. We treat now a case where n = m = 15.
The best performances of our tests are illustrated in Table 3.5 - Table 3.8.

MATLAB computed, via parallel splitting, an optimal solution given by

x̄ =(0.5714, 2.6062, 1.3658, 3.9575, 0.0427, 2.4670, 0.1018, 0.1528,

2.3530, 0.1957, 0.84020.6214, 0.1763, 0.6453, 0.3104)⊤,

τ̄ =(−0.0125, 0.2369, 0.0472, 0.2945,−0.0054, 0.0136,−0.0238,−0.022,
0.0987,−0.0345,−0.0118,−0.0217,−0.0176,−0.0277,−0.0024)⊤,

3.4. NUMERICAL EXPERIMENTS 76

Algorithm PS(µ = 1.83, ν = 2) PDIP

Number of iterations 1595 634
CPU time (seconds) 3.4189 5.702284
Objective value −2.8700 −2.860610

Table 3.5: Comparison of splitting and primal-dual interior point methods for ϵ1 = 10−3

Algorithm PS(µ = 1.83, ν = 2) PDIP

Number of iterations 2743 634
CPU time (seconds) 5.7414 5.5653
Objective value −2.861053 −2.860610

Table 3.6: Comparison of splitting and primal-dual interior point methods (n = 15,m = 105) for
ϵ2 = 10−4

Algorithm PS(µ = 1.83, ν = 2) PDIP

Number of iterations 5432 636
CPU time (seconds) 11.4630 5.5811
Objective value −2.860556 −2.860555

Table 3.7: Comparison of splitting and primal-dual interior point methods (n = 15,m = 15) for
ϵ3 = 10−6

Algorithm PS(µ = 1.83, ν = 2) PDIP

Number of iterations 8142 639
CPU time (seconds) 17.9040 5.5849
Objective value −2.860552 −2.860552

Table 3.8: Comparison of splitting and primal-dual interior point methods (n = 15,m = 15) for
ϵ4 = 10−8

t̄ =2.6233.

Similarly to Example 3.4.1 we have ȳ = 0R15 .
By solving linear system (S3), MATLAB finds β = 5.4949 as well as the optimal asset allocation λ̄

λ̄ =(0.0000, 0.0000, 0.7019, 0.0041, 0.2230, 0.0000, 0.0000, 0.0000

0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0710, 0.0000)⊤

while the optimal primal objective value is v(P) = −2.860552.
The primal-dual interior point method is still delivering after fewer iterations. Regarding com-

putational time, the parallel splitting method converges faster than its concurrent up to accuracy
ϵ2 = 10−4 but it is no longer the case from ϵ3 = 10−6 as it is now the primal-pual interior point
which demonstrates faster convergence. Both methods yield similar objective values, confirming
that they effectively solve the problem, with their efficiency varying depending on the chosen error
tolerance.

3.4. NUMERICAL EXPERIMENTS 77

(a) Objective value via primal-dual interior point (b) Objective value via parallel splitting

Figure 3.3: Convergence of the objective value of problem (n = 15,m = 15) via parallel splitting
and primal-dual interior point methods

(a) Optimal solution via primal-dual interior
point (b) Optimal solution via parallel splitting

Figure 3.4: Convergence of the optimal solution of problem (n = 15,m = 15) via parallel splitting
and primal-dual interior point methods

The convergence of both the objective function and optimal solution are respectively illustrated in
Figure 3.3 and Figure 3.4.

In the following two examples, we explore two different scenarios based on the number of samples
m and the number of financial instruments n. These results will enable us to draw some conjectures.
In the case of the parallel splitting method, we executed our MATLAB programs with various step
sizes ν and parameters µ, starting from the origin in each case. The same stopping criterion was
applied across both examples. The data for these tests, including the weights p, vectors c and h
and the matrix A were randomly generated using MATLAB. This approach is the same as in other
examples in this chapter on portfolio optimization, ensuring that the comparisons are consistent.

Example 3.4.3. Let n = 10,m = 5.
MATLAB computed, via parallel splitting, an optimal solution given by

x̄ = (2.8000, 0.1145, 0.7090, 0.6939, 0.3219)⊤ ,

τ̄ = (0.7222,−0.0606,−0.0598,−0.0089,−0.0820)⊤ ,
t̄ = 10.7293.

As D = R10, we have ȳ = 0R10 .
By solving linear system (S3), the optimal asset allocation λ̄ is given by (as well as β̄ = 2.0589)

λ̄ = (0.0000, 0.8763, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.000, 0.1237)⊤

3.4. NUMERICAL EXPERIMENTS 78

Algorithm PS(µ = 1.45, ν = 2.2) PDIP

Number of iterations 353 470
CPU time (seconds) 0.3906 4.3591
Objective value 9.667381 9.666822

Table 3.9: Comparison of splitting and primal-dual interior point methods (n = 10,m = 5) for
ϵ1 = 10−3

Algorithm PS(µ = 1.45, ν = 2.2) PDIP

Number of iterations 460 471
CPU time (seconds) 0.5383 4.1449
Objective value 9.667280 9.667154

Table 3.10: Comparison of splitting and primal-dual interior point methods (n = 10,m = 5) for
ϵ2 = 10−4

Algorithm PS(µ = 1.45, ν = 2.2) PDIP

Number of iterations 673 474
CPU time (seconds) 0.7169 4.1813
Objective value 9.667242 9.667240

Table 3.11: Comparison of splitting and primal-dual interior point methods (n = 10,m = 5) for
ϵ3 = 10−6

Algorithm PS(µ = 1.45, ν = 2.2) PDIP

Number of iterations 886 476
CPU time (seconds) 0.8139 4.4157
Objective value 9.667241 9.667241

Table 3.12: Comparison of splitting and primal-dual interior point methods (n = 10,m = 5) for
ϵ4 = 10−8

while the optimal primal objective value is v(P) = 9.667241.
The results displayed in Table 3.9 - Table 3.12 highlight that although the primal-dual interior

point method typically requires fewer iterations than the parallel splitting method, this is not the
case in this example. Notably, for error tolerances ϵ1 = 10−3 and ϵ2 = 10−4, our parallel splitting
incurs less computational cost (353 iterations compared to 470 for PDIP at ϵ1) and (460 compared
to 471 at ϵ2). Furthermore, the parallel splitting method demonstrates faster computational times
for all error tolerances. Specifically, our parallel algorithm converged 10 times faster than the
primal-dual interior point method at ϵ1 = 10−3 and almost 9 as fast at ϵ4 = 10−8 while both
methods achieved comparable objective values.

Example 3.4.4. Suppose now that n = 5,m = 10.
MATLAB computed, via parallel splitting, an optimal solution given by

x̄ = (1.8950, 0.2273, 4.3454, 0.8383, 0.6533, 0.3573, 0.0609, 0.8706, 0.9573, 0.7764)⊤ ,

3.4. NUMERICAL EXPERIMENTS 79

τ̄ = (0.0306,−0.0448, 0.6480,−0.0177,−0.0364,−0.0040,−0.0263,−0.0097,−0.0051,−0.0237)⊤ ,
t̄ = 4.8743.

Once again, considering the choice D = R5, we have ȳ = 0R5 . By solving linear system (S3),
MATLAB finds β̄ = 2.2386 and the optimal asset allocation

λ̄ = (0.3944, 0.000, 0.6056, 0.0000, 0.0000)⊤

while the optimal primal objective value is v(P) = 3.529863.

Algorithm PS(µ = 1.65, ν = 2.2) PDIP

Number of iterations 714 17
CPU time (seconds) 1.1523 0.6695
Objective value 3.526018 3.529451

Table 3.13: Comparison of splitting and primal-dual interior point methods (n = 5,m = 10) for
ϵ1 = 10−3

Algorithm PS(µ = 1.65, ν = 2.2) PDIP

Number of iterations 1003 18
CPU time (seconds) 1.5743 0.7176
Objective value 3.530150 3.529777

Table 3.14: Comparison of splitting and primal-dual interior point methods (n = 5,m = 10) for
ϵ2 = 10−4

Algorithm PS(µ = 1.65, ν = 2.2) PDIP

Number of iterations 1611 21
CPU time (seconds) 2.3536 0.6885
Objective value 3.529864 3.529862

Table 3.15: Comparison of splitting and primal-dual interior point methods (n = 5,m = 10) for
ϵ3 = 10−6

Algorithm PS(µ = 1.65, ν = 2.2) PDIP

Number of iterations 2271 24
CPU time (seconds) 3.1418 0.7093
Objective value 3.529863 3.529863

Table 3.16: Comparison of splitting and primal-dual interior point methods (n = 5,m = 10) for
ϵ4 = 10−8

While both methods are reliable in finding an optimal solution, in this instance, as shown in
Table 3.13 - Table 3.13, the primal-dual interior point clearly outperforms the parallel splitting
algorithm in both computational efficiency and iteration count, making it the preferred method for
this problem.

3.5. DISCUSSION 80

3.5 Discussion

Taking into account the previous four instances, we can draw the following conclusions.

� In general, and for most error tolerances, the primal-dual interior point method requires
notably fewer iterations compared to the parallel splitting algorithm. However, we should
mention that each iteration of PDIP involves more computational complexity compared to
parallel splitting, as it includes operations like line search and the evaluation of the surrogate
duality gap. These additional steps increase the computational burden per iteration despite
requiring fewer iterations to converge.

� The results highlight that PDIP is particularly advantageous when the number of samples m
is large relative to the number of financial instruments n. It converges more rapidly than its
concurrent.

� When the number of samples is smaller relative to the number of financial instruments,
parallel splitting outperforms in terms of computational speed, even though it requires more
iterations. This indicates that parallel splitting is more effective in scenarios where the sample
size is less critical.

3.6 Perspectives on parallel splitting methods for entropy opti-
mization

The primal-dual algorithm developed by Ahmadi-Javid is generally more efficient than our splitting
algorithm for large sample sizes (m). This advantage arises because the primal-dual algorithm han-
dles a convex/differentiable problem where the number of variables and constraints is independent
of the sample size. In contrast, our splitting algorithm addresses the primal problem, which scales
with the sample size, leading to decreased efficiency and longer convergence times as m increases.
When the sample size is relatively small (say less than 20), our splitting algorithm can be faster,
given the right parameter settings. This is because, in scenarios with a small number of samples,
the splitting method can be more efficient compared to the primal-dual interior point approach.
In cases where the sample size m is very large, the primal problem becomes less practical for split-
ting methods due to the high-dimensional nature of the primal variables (Rm). Despite this, our
splitting algorithm often demonstrates faster convergence compared to other primal-solving meth-
ods. The primal-dual interior point method introduced in [3] solves the dual problem, where the
dual variables lie in Rn (with n typically being smaller than m), which contributes to its efficiency
for large sample sizes.

Therefore, in situations where the number of financial instruments n and the number of samples
m are similar (such as 5 × 5, 10 × 10, 15 × 15), our splitting algorithm performs comparably to or
even better than the primal-dual algorithm in terms of computational time.

Conclusion

The parallel splitting methods (both primal and dual) have proven to be efficient for solving location
problems, particularly minimax location problems that involve nonsmooth objective functions.
However, our results demonstrated that, in instances where it can be implemented, the Chambolle-
Pock algorithm significantly outperforms both splitting methods in terms of computational cost
(number of iterations) and time. Both the Chambolle-Pock and the parallel splitting (which is a
version of Douglas-Rachford) algorithms are exact methods, meaning they converge to the exact
solution of the problem and deliver the precise optimal objective value.

The second method we explored during this internship is a variant of the mirror descent algo-
rithm. This approach involves smoothing the functions in the objective via the Moreau envelope,
which introduces a smoothing parameter and utilizes a mirror map. While this method does con-
verge to a solution that yields a reasonable objective value, it often does not achieve the exact
solution. To obtain a result closer to the exact solution, the smoothing parameter must be made
progressively smaller, which in turn increases the computational cost in terms of both iterations and
CPU time. The challenge lies in finding the optimal balance between accuracy and computational
efficiency.

Overall, parallel splitting and Chambolle-Pock are generally more suitable than mirror descent
for these types of problems. However, it’s important to note that, unlike the Chambolle-Pock
algorithm, mirror descent requires less stringent assumptions and offers some minor advantages,
such as a modest increase in computational cost across different levels of error tolerance accuracy.
The Chambolle-Pock algorithm is a specific type of primal-dual method tailored for problems
involving convex functions and linear operators. It exhibits strong convergence properties and an
ability to find accurate solutions.
The mirror descent is a more general optimization technique that adapts gradient descent methods
to handle constraints and regularizations. It is particularly useful for problems where the feasible
set is complex. However, the performance of the mirror descent method depends heavily on the
choice of parameters and step sizes, which can affect its convergence to the exact optimal value.

When dealing with applications where exact objective values are crucial, primal-dual splittings
and Chambolle-Pock algorithms might be preferred due to their strong theoretical convergence
guarantees. The mirror descent method might be used for its flexibility and general applicability,
but with the understanding that additional tuning might be needed to achieve the desired accuracy
and thus affecting computational speed.
Finally, in the context of our locations problems, inertial approaches have shown promise in accel-
erating convergence for primal problems, but have not outperformed non-inertial methods for dual
problems. Further experimentation could offer a chance to get the desired improvements.

Our investigations related to portfolio optimization showed that parallel splitting methods may
offer an alternative to the primal-dual interior point (PDIP) algorithm, particularly when the
sample size is small. While PDIP generally excels in handling large sample sizes due to its efficient
processing of the dual problem, parallel splitting algorithms prove to be competitive and even

81

3.6. PERSPECTIVES ON PARALLEL SPLITTINGMETHODS FOR ENTROPYOPTIMIZATIONi

advantageous in cases where the number of financial instruments and samples are similar. Although
its performance diminishes as the sample size grows, we proved that the parallel splitting algorithm
outperformed the PDIP method when the number of samples was relatively small.

While it wasn’t feasible to use the Chambolle-Pock algorithm due to unmet assumptions, we
attempted to implement the mirror descent method in the context of entropy optimization. How-
ever, our investigations revealed that this approach was not suitable, as we couldn’t identify the
optimal parameters. The problem’s dimensionality may have contributed to this difficulty.

Appendix

Theorem 3.6.1. [11, Theorem 2.1] Assume that C is closed convex and 0X ∈ C, Ω is closed and
convex, the function f : X → R̄ is convex and lowersemicontinuous. Suppose that

C0 ∩ domf∗ ∩ domσΩ ̸= ∅. (3.20)

Furthermore, we make one of the following hypothesis

� epiγC + epif + (Ω× R+) is closed,

� ∃x∗ ∈ C0 ∩ domf∗ ∩ domσΩ such that two of the functions δC0 , f∗, σΩ are continuous at x∗.

Then, T C
Ω,f is proper, convex and lower semicontinuous and the infimal convolution γC□f□δΩ

is exact, i,e
T C
Ω,f (x) = min

y∈X,z∈Ω
{γC(x− y − z) + f(y)} , ∀x ∈ X. (3.21)

Theorem 3.6.2. [5, Theorem 27.8] Let n ∈ N n ≥ 2 and fi : Rd → R̄ be a proper, convex and
lower semicontinuous function for i = 1, · · · , n.
Suppose that

min
x∈Rd

n∑
i=1

fi(x) (P)

has at least one solution and that the qualification condition

dom(f1) ∩
n⋂

i=2

int (dom(fi)) ̸= ∅

is satisfied. Let (µk)k∈N ⊆ [0, 2] such that∑
k∈N

µk(2− µk) = +∞.

Let ν > 0 and (xi,0)
n
i=1 ∈ (Rd)n and consider for all k ∈ N

rk =
1

n

n∑
i=1

xi,k,

yi,k = proxνfi(xi,k), i = 1, · · · , n,

qk =
1

n

n∑
i=1

yi,k,

xi,k+1 = xi,k + µk(2qk − rk − ui,k), i = 1, · · · , n.

Then, (rk)k∈N converges to an optimal solution of (P).

ii

3.6. PERSPECTIVES ON PARALLEL SPLITTINGMETHODS FOR ENTROPYOPTIMIZATIONiii

Algorithm 5 Chambolle-Pock - general case

[9, Algorithm 1]

1: Input: Choose (x0, y0) ∈ X × Y and constants σ, τ > 0, θ ∈ [0, 1] and set x̄0 = x0.
2: For k ≥ 0 do
3: yk+1 = proxF ∗(yk + σKx̄k)
4: xk+1 = proxG(x

k − τK∗yk+1)
5: x̄k+1 = xk+1 + θ(xk+1 − xk)
6: End for

Algorithm 6 Mirror Descent - general case

[6, Algorithm 4]

1: Input: Choose x0 ∈ Im∇H∗ ∩C, the smoothing parameters γk > 0, and the step sizes νk > 0,
for k ≥ 0.

2: For k ≥ 0 do
3: ψk

0 := xk

4: for i := 1, . . . ,m do

5: ψk
i := ∇H∗

(
∇H(ψk

i−1)− ϵki νk

γk piA
∗
i

(
Aiψ

k
i−1 − proxγkfi

(
Aiψ

k
i−1

)))
6: end for
7: xk+1 := proxH

νkg
(ψk

m)
8: End for

ϵki ∈ {0, 1} is a random variable independent of ψk
i−1 and P(ϵki = 1) = pi, 1 ≤ i ≤ m and k ≥ 0.

Algorithm 7 Inertial Parallel Splitting - general case

[12, Proposition 5.2]

1: Input: Choose (ti,0)1≤i≤m ∈ X, (pi,−1)1≤i≤m ∈ X, and constants ωi > 0, ϵi ∈ [0, 1[, λ ∈]0, 2[,
and y0 ∈ Argminz∈E

∑m
i=1 ωi∥Liz − ti,0∥2i .

2: For k ≥ 0 do
3: for i = 1, · · · , n do
4: pi,n = prox (1−ϵi)

ωi
fi
((1− ϵi)ti,n + ϵipi,n−1) + ai,n

5: cn ∈ Argminz∈E
∑m

i=1 ωi∥Liz − pi,n∥2i
6: end for
7: for i = 1, · · · , n do
8: ti,n+1 = ti,n + λn (Li(2cn − yn)− pi,n)
9: end for

10: yn+1 = yn + λn(cn − yn)
11: End for

3.6. PERSPECTIVES ON PARALLEL SPLITTINGMETHODS FOR ENTROPYOPTIMIZATIONiv

Proposition 3.6.3. [12, Proposition 5.4] Let (ϵ1, . . . , ϵn) ∈ [0, 1[n and (λk)k∈N be a sequence of real
numbers. For every i = 1, · · · , n, let (ai,k)k∈N be a sequence in Xi. Let {yk}n∈N ⊂ E, {ck}k∈N ⊂ E,
{tk}k∈N ⊂ X, and {pk}k≥−1 ⊂ X be generated by Algorithm 7.
Suppose that the following assumptions hold:

1. 0 ∈ sqri{(L1z − x1, . . . , Lnz − xn) | z ∈ E, x1 ∈ domf1, . . . , xn ∈ domfn}.

2. There exists λ ∈]0, 2[such that ∀k ∈ N, λ ≤ λk+1 ≤ λk < 2.

3. ∀i ∈ {1, . . . , n},
∑

k∈N ∥ai,k∥i < +∞.

If the set of solutions to (PL) is nonempty, then (L1yk, . . . , Lnyk)k∈N, (L1ck, . . . , Lnck)k∈N, and
(pk)k∈N converge weakly to (L1ŷ, . . . , Lnŷ) where ŷ is a solution to (PL).

Corollary 3.6.4. [14, Corollary 2.3] Let h : X → R such that h(x) = w∥x∥X , w ≥ 1. Then, for
every (x, ξ) ∈ X × R,

Pepi(w∥·∥X)(x, ξ) =

(x, ξ), if w∥x∥X ≤ ξ,
(0, 0), if ∥x∥X ≤ −wξ,(

∥x∥X+wξ
∥x∥X(w2+1)

x, w∥x∥X+w2ξ
w2+1

)
, otherwise.

(3.22)

Lemma 3.6.5. [14, Lemma 2.1] For w ≥ 1, pi ∈ X, i = 1, · · · , n ,

Pepi(w∥.−pi∥X)(x, ξ) = Pepi(w∥.∥X)(x− pi, ξ) + (pi, 0). (3.23)

Theorem 3.6.6. [4] Let p > 0 and

h : R→ R, h(x) =

{
px lnx, if x ≥ 0,

+∞, if x < 0.
(3.24)

Then it holds for all (x, ξ) ∈ R× R that

Pepih(x, ξ) =

(x, ξ), if px lnx ≤ ξ,
(0, ξ), if x ≤ 0 and ξ ≥ 0,

(ez̄, pz̄ez̄), otherwise,

(3.25)

where z̄ ∈ R is the unique solution of the equation

(p2z2 + p2z + 1)ez − pξ(z + 1)− x = 0 (3.26)

that fulfills pz̄ez̄ ≥ ξ. More precisely,

1. if ξ ≤ −p
e , then z̄ ∈ R,

2. if −p
e < ξ ≤ 0 and x ≤ 1

e , then z̄ ∈ (−1,W−1(
ξ
p)],

3. if −p
e < ξ ≤ 0 and x > 1

e , then z̄ ∈ [W (ξp),+∞),

4. if ξ > 0, then z̄ ∈ [W (ξp),+∞).

3.6. PERSPECTIVES ON PARALLEL SPLITTINGMETHODS FOR ENTROPYOPTIMIZATIONv

Corollary 3.6.7. [4] Let 0 < p ≤ 1. Then it holds for all (x, ξ) ∈ R× R that

Pepih(x, ξ) =

(x, ξ), if px lnx ≤ ξ,
(0, ξ), if x ≤ 0 and ξ ≥ 0,

(ez̄, pz̄ez̄), otherwise,

(3.27)

where z̄ ∈ R is the unique solution of the equation

(p2z2 + p2z + 1)ez − pξ(z + 1)− x = 0 (3.28)

that fulfills pz̄ez̄ ≥ ξ. More precisely, exactly one of the following six cases holds:

1. ξ ≤ −p
e and x < 0, then z̄ ∈ R is unique and z̄ ∈ (−1, 0],

2. ξ ≤ −p
e and x ≥ 0, then z̄ ∈ R is unique and z̄ ∈ (−1, x],

3. −p
e < ξ ≤ 0 and x < 0, then z̄ ∈ R is unique and z̄ ∈ (−1,W−1(ξp)],

4. −p
e < ξ ≤ 0 and 0 ≤ x ≤ 1/e, then z̄ ∈ R is unique and z̄ ∈

[
W−1(ξp) + ln(x)− 1,W−1(ξp)

]
,

5. −p
e < ξ ≤ 0 and x > 1/e, then z̄ ∈ R is unique and z̄ ∈

[
W (ξp),W (ξp) + ln(x) + 2

]
,

6. ξ > 0, then x > 1 and z̄ ∈ R is unique and z̄ ∈
[
W (ξp),W (ξp) + ln(x) + 1

]
.

Proposition 3.6.8. [5, Example 28.15] Let u a nonzero vector in a Hilbert space H. Let η ∈ R
and set

C = {x ∈ H | ⟨x, u⟩ = η}. (3.29)

Then

∀x ∈ H, PCx = x+
η − ⟨x, u⟩
∥u∥2

u. (3.30)

Proposition 3.6.9. [5, Proposition 28.16] Let u ∈ H, let η ∈ R, and set

C = {x ∈ H | ⟨x, u⟩ ≤ η}. (3.31)

Then exactly one of the following holds:

(i) u = 0 and η ≥ 0, in which case C = H and PC = Id.

(ii) u = 0 and η < 0, in which case C = ∅.

(iii) u ̸= 0, in which case C ̸= ∅ and

∀x ∈ H, PCx =

{
x, if ⟨x, u⟩ ≤ η,
x+ η−⟨x,u⟩

∥u∥2 u, if ⟨x, u⟩ > η.
(3.32)

Bibliography

[1] S. Adly, L. Bourdin, and F. Caubet. On a decomposition formula for the proximal operator
of the sum of two convex functions, June 2018. arXiv:1707.08509 [math].

[2] A. Ahmadi-Javid. Entropic Value-at-Risk: A New Coherent Risk Measure. Journal of Opti-
mization Theory and Applications, 155(3):1105–1123, 2012. Publisher: Springer.

[3] A. Ahmadi-Javid and M. Fallah-Tafti. Portfolio Optimization with Entropic Value-at-Risk.
European Journal of Operational Research, 279(1):225–241, November 2019. arXiv:1708.05713
[math, q-fin].

[4] N. Baloul, S. Grad, and O. Wilfer. Proximal splitting methods for solving entropy constrained
optimization problems, in preparation.

[5] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in
Hilbert Spaces. CMS Books in Mathematics. Springer International Publishing, Cham, 2017.

[6] S. Bitterlich and S.-M. Grad. Stochastic incremental mirror descent algorithms with Nesterov
smoothing. Numerical Algorithms, August 2023. Publisher: Springer Verlag.

[7] R. Bot, S. Grad, and G. Wanka. Entropy constrained programs and geometric duality obtained
via Fenchel-Lagrange duality approach, 2004.

[8] R. I. Bot, S.-M. Grad, and G. Wanka. Duality in Vector Optimization. Vector Optimization.
Springer, Berlin, Heidelberg, 2009.

[9] A. Chambolle and T. Pock. A First-Order Primal-Dual Algorithm for Convex Problems with
Applications to Imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145, May
2011.

[10] O. Cornejo and C. Michelot. A Proximal Solution for a Class of Extended Minimax Location
Problem. In Computational Science and Its Applications – ICCSA 2005, pages 712–721, Berlin,
Heidelberg, 2005. Springer.

[11] S.-M. Grad and O. Wilfer. A proximal method for solving nonlinear minmax location problems
with perturbed minimal time functions via conjugate duality. Journal of Global Optimization,
74(1):121–160, 2019. Publisher: Springer.

[12] J.-C. Pesquet and N. Pustelnik. A Parallel Inertial Proximal Optimization Method. Pacific
Journal of Optimization, 8(2):273–305, 2012. Publisher: Yokohama Publishers.

vi

BIBLIOGRAPHY vii

[13] G. Wanka and O. Wilfer. Duality results for nonlinear single minimax location problems
via multi-composed optimization. Mathematical Methods of Operations Research, 86(2):401–
439, 2017. Publisher: Springer & Gesellschaft für Operations Research (GOR) & Nederlands
Genootschap voor Besliskunde (NGB).

[14] G. Wanka and O. Wilfer. Formulae of epigraphical projection for solving minimax location
problems. Pacific Journal of Optimization, 16:288–313, 2017.

[15] G. Wanka and O. Wilfer. A Lagrange duality approach for multi-composed optimization prob-
lems. TOP: An Official Journal of the Spanish Society of Statistics and Operations Research,
25(2):288–313, 2017. Publisher: Springer & Sociedad de Estad́ıstica e Investigación Operativa.

	List of figures
	List of tables
	Introduction
	Background
	Objectives
	Structure of the report
	Preliminaries
	Basic notions related to constrained optimization
	Duality

	Facility location optimization
	Basic concepts related to location problems
	Position of the problem
	Duality results
	Special cases
	Special case one
	Special case two

	Algorithms
	Chambolle-Pock algorithm
	Mirror descent algorithm

	Numerical experiments
	Discussion
	Perspectives on facility location optimization problems
	Perspectives related to the Chambolle-Pock algorithm
	Perspectives related to the mirror descent algorithm
	Perspectives related to the parallel splitting algorithms

	Entropy and portfolio optimization
	Some elements on modern portfolio theory
	Risk measures and Portfolio Optimization
	Risk measures and EVaR
	Portfolio Optimization with EVaR

	Portfolio optimization via splitting
	General case
	Special case

	Numerical Experiments
	Discussion
	Perspectives on parallel splitting methods for entropy optimization
	Conclusion
	Appendix
	Bibliography

